Abstract

We induce spontaneous motion that is both directed and complex in micron-sized asymmetric Brownian particles in a spherically aberrated optical trap to generate microswimmers. The aberrated optical trap is prepared in a slightly modified optical tweezers configuration where we use a refractive index mismatched cover slip leading to the formation of an annular intensity distribution near the trap focal plane. Asymmetric scattering from a micro-particle trapped in this annular trap gives rise to a net tangential force on the particle causing it to revolve spontaneously in the intensity ring. The rate of revolution can be controlled from sub-Hz to a few Hz by changing the intensity of the trapping light. Theoretical simulations performed using finite-difference time-domain method verify the experimental observations. We also experimentally demonstrate simultaneous spin and revolution of a micro-swimmer which shows that complex motion can be achieved by designing a suitable shape of a micro-swimmer in the optical potential.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle

Jing Liu, Chao Zhang, Yiwu Zong, Honglian Guo, and Zhi-Yuan Li
Photon. Res. 3(5) 265-274 (2015)

Brownian diffusion of nano-particles in optical traps

T. J. Davis
Opt. Express 15(5) 2702-2712 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Schweitzer, Brownian Agents and Active Particles, (Springer, 2003).
  2. G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
    [Crossref]
  3. Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
    [Crossref]
  4. H. Berg and D. Brown, “Chemotaxis in Eschericha Coli analysed by Three-dimensional tracking,” Nature 239, 500–504 (1972).
    [Crossref] [PubMed]
  5. H. Berg, E. Coli in Motion, (Springer, 2004).
  6. P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
    [Crossref]
  7. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–348 (2011).
    [Crossref]
  8. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
    [Crossref]
  9. P. Galajda and P. Oromos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [Crossref]
  10. K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
    [Crossref]
  11. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
    [Crossref]
  12. A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
    [Crossref]
  13. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358–364 (1959).
    [Crossref]
  14. S. Roy, “Soft-oxometalates: A very short introduction,” Comm. Inorg. Chem. 32, 113–115 (2011);S. Roy, “Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties,” Cryst. Eng. Comm. 16, 4667–4676 (2014).
    [Crossref]
  15. B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
    [Crossref]
  16. S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater.,  6, 557–562 (2007).
    [Crossref] [PubMed]
  17. B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
    [Crossref]

2014 (2)

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[Crossref]

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

2013 (1)

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

2012 (1)

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

2011 (4)

S. Roy, “Soft-oxometalates: A very short introduction,” Comm. Inorg. Chem. 32, 113–115 (2011);S. Roy, “Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties,” Cryst. Eng. Comm. 16, 4667–4676 (2014).
[Crossref]

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–348 (2011).
[Crossref]

2010 (1)

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

2008 (1)

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

2007 (1)

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater.,  6, 557–562 (2007).
[Crossref] [PubMed]

2005 (1)

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
[Crossref]

2001 (1)

P. Galajda and P. Oromos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

1972 (1)

H. Berg and D. Brown, “Chemotaxis in Eschericha Coli analysed by Three-dimensional tracking,” Nature 239, 500–504 (1972).
[Crossref] [PubMed]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358–364 (1959).
[Crossref]

Bambardekar, K.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Banerjee, A.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

Bechinger, C.

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Berg, H.

H. Berg and D. Brown, “Chemotaxis in Eschericha Coli analysed by Three-dimensional tracking,” Nature 239, 500–504 (1972).
[Crossref] [PubMed]

H. Berg, E. Coli in Motion, (Springer, 2004).

Bouffier, L.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–348 (2011).
[Crossref]

Brown, D.

H. Berg and D. Brown, “Chemotaxis in Eschericha Coli analysed by Three-dimensional tracking,” Nature 239, 500–504 (1972).
[Crossref] [PubMed]

Buttinoni, I.

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Dharmadhikari, A. K.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Dharmadhikari, J. A.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Dutta Gupta, S.

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

DuttaGupta, S.

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

Fattah, Z.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Fujimura, Y.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Galajda, P.

P. Galajda and P. Oromos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Garrigue, P.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Ghosh, N.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

Gigan, S.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[Crossref]

Glotzer, S. C.

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater.,  6, 557–562 (2007).
[Crossref] [PubMed]

Golestanian, R.

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

Gupta, P. K.

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
[Crossref]

Haldar, A.

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

Kato, T.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Kono, H.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Kuhn, A.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Kummerer, H-J.

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Lapeyre, V.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Limtrakul, J.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Loget, G.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Mathur, D.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
[Crossref]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
[Crossref]

Oromos, P.

P. Galajda and P. Oromos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–348 (2011).
[Crossref]

Pagonabarraga, I.

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

Pal, S. B.

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

Panigrahi, P.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

Panigrahi, P. K.

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

Parashar, B.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358–364 (1959).
[Crossref]

Roy, B.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

Roy, S.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

S. Roy, “Soft-oxometalates: A very short introduction,” Comm. Inorg. Chem. 32, 113–115 (2011);S. Roy, “Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties,” Cryst. Eng. Comm. 16, 4667–4676 (2014).
[Crossref]

Sagues, F.

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

Sahasrabudhe, A.

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

Schweitzer, F.

F. Schweitzer, Brownian Agents and Active Particles, (Springer, 2003).

Sharma, S.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Solomon, M. J.

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater.,  6, 557–562 (2007).
[Crossref] [PubMed]

Tierno, P.

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

Vogt, D.

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Volpe, G.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[Crossref]

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[Crossref]

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Warakulwit, C.

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358–364 (1959).
[Crossref]

Yamada, T.

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

Appl. Phys. Lett. (1)

P. Galajda and P. Oromos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Comm. Inorg. Chem. (1)

S. Roy, “Soft-oxometalates: A very short introduction,” Comm. Inorg. Chem. 32, 113–115 (2011);S. Roy, “Soft-oxometalates beyond crystalline polyoxometalates: formation, structure and properties,” Cryst. Eng. Comm. 16, 4667–4676 (2014).
[Crossref]

Electrochim. Acta (1)

Z. Fattah, G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, L. Bouffier, and A. Kuhn, “Straightforward single-step generation of microswimmers by bipolar electrochemistry,” Electrochim. Acta 56, 10562–10566 (2011).
[Crossref]

J. Biomed. Opt. (1)

K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, S. Sharma, D. Mathur, and Y. Fujimura, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15, 041504 (2010).
[Crossref]

J. Mol. Engg. Mater. (1)

B. Roy, A. Sahasrabudhe, B. Parashar, N. Ghosh, P. Panigrahi, A. Banerjee, and S. Roy, “Micro-optomechanical movements (MOMs) with soft oxometalates (SOMs): Controlled motion of single soft oxometalate peapods using exotic optical potentials,” J. Mol. Engg. Mater. 2, 1440006–1440010 (2014).
[Crossref]

J. Phys. Chem. B. (1)

P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, “Magnetically Actuated Colloidal Microswimmers,” J. Phys. Chem. B. 112, 16525–16528 (2008).
[Crossref]

Nat. Mater. (1)

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater.,  6, 557–562 (2007).
[Crossref] [PubMed]

Nat. Photon. (1)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photon. 5, 343–348 (2011).
[Crossref]

Nature (1)

H. Berg and D. Brown, “Chemotaxis in Eschericha Coli analysed by Three-dimensional tracking,” Nature 239, 500–504 (1972).
[Crossref] [PubMed]

Opt. Exp. (1)

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Exp. 13, 4745–4751 (2005).
[Crossref]

Phys. Rev. A (2)

A. Haldar, S. B. Pal, B. Roy, S. Dutta Gupta, and A. Banerjee, “Self-assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A 85, 033832 (2012).
[Crossref]

B. Roy, N. Ghosh, S. DuttaGupta, P. K. Panigrahi, S. Roy, and A. Banerjee, “Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap,” Phys. Rev. A 87, 043823 (2013).
[Crossref]

Proc. R. Soc. Lond. A (1)

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358–364 (1959).
[Crossref]

Sci. Rep. (1)

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation,” Sci. Rep. 4, 3936 (2014).
[Crossref]

Soft Matter (1)

G. Volpe, I. Buttinoni, D. Vogt, H-J. Kummerer, and C. Bechinger, “Microswimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).
[Crossref]

Other (2)

F. Schweitzer, Brownian Agents and Active Particles, (Springer, 2003).

H. Berg, E. Coli in Motion, (Springer, 2004).

Supplementary Material (4)

» Media 1: MP4 (290 KB)     
» Media 2: MP4 (744 KB)     
» Media 3: MP4 (67 KB)     
» Media 4: MP4 (219 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a). Stratified medium used for generating annular potential. (b). Simulation of the distribution of field intensity near focal plane. Particles are essentially trapped in the ring and can exhibit spontaneous revolution and gyroscopic motion in the ring. Dimensions of x and y axes are in μm, while the color panel is normalized with respect to input intensity which is 1. (c). TEM image of pea-pod shaped SOM. (d). TEM image of catalyst loaded pea-pod. The morphology has changed along with the height.
Fig. 2
Fig. 2 (a)–(d). Snap shots of a single pea-pod as it revolves in the annulus. The diameter of the orbit is around 2 μm. The actual particle motion can be seen in Media 1. (e)–(g). Snap shots of a single catalyst loaded pea-pod as it revolves in the annulus of diameter around 8 μm ( Media 2). (h)–(j). The same pea-pod as the z-focus is adjusted to a lower diameter of the orbit 6.5 μm. The velocity of the pea-pod also increases as can be seen in Media 3. (k). Particle velocity vs laser power. (l). Circumference of orbit vs particle velocity. Rotation rates in Hz corresponding to each data point are given in parentheses adjacent to the points.
Fig. 3
Fig. 3 (a). Cone-shaped test particle designed to mimic a pea-pod. (b). Scatter profile of test particle in annular electric field generated by propagation of tightly focused light through a stratified medium in Lumerical. (c). x and y components of scattering force calculated from Eq. 3. (d). Quiver plot showing constant magnitude and tangential nature of total force along the annulus. (e). Scatter pattern for a Janus particle (polystyrene sphere with one side coated with gold, shown in inset) placed on the ring. (f). Quiver plot for force calculated for Janus particle.
Fig. 4
Fig. 4 Rotation coupled with revolution in an orbit for a micro-rotor. Panels a-e show five positions of the rotor as it spins along its axis while revolving in an orbit of diameter around 6 μm. Note that the orientation of the rotor is the same in panels a and e which show that the particle has spun around its axis by 360 degrees as it completes one entire orbit of revolution (see the actual particle motion in Media 4).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = 1 4 π [ E E + H H 1 2 ( E 2 + H 2 ) ] .
F = f t o t d V ,
F = T d A ,

Metrics