Abstract

Mesh-based computer generated hologram enables realistic and efficient representation of three-dimensional scene. However, the dark line artifacts on the boundary between neighboring meshes are frequently observed, degrading the quality of the reconstruction. In this paper, we propose a simple technique to remove the dark line artifacts by matching the phase on the boundary of neighboring meshes. The feasibility of the proposed method is confirmed by the numerical and optical reconstruction of the generated hologram.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram

Jae-Hyeung Park, Seong-Bok Kim, Han-Ju Yeom, Hee-Jae Kim, HuiJun Zhang, BoNi Li, Yeong-Min Ji, Sang-Hoo Kim, and Seok-Bum Ko
Opt. Express 23(26) 33893-33901 (2015)

Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram

Mehdi Askari, Seong-Bok Kim, Kwang-Soo Shin, Seok-Bum Ko, Sang-Hoo Kim, Dae-Youl Park, Yeon-Gyeong Ju, and Jae-Hyeung Park
Opt. Express 25(21) 25867-25878 (2017)

Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram

Seok-Beom Ko and Jae-Hyeung Park
Opt. Express 25(24) 29788-29797 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  2. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  3. K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21(2), 023002 (2012).
    [Crossref]
  4. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
    [Crossref] [PubMed]
  5. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  6. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  7. H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50(34), H245–H252 (2011).
    [Crossref] [PubMed]
  8. Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
    [Crossref] [PubMed]
  9. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
    [Crossref] [PubMed]
  10. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47(10), 1567–1574 (2008).
    [Crossref] [PubMed]
  11. Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, B.-C. Chen, H.-X. He, and H.-Z. Wang, “High-speed full analytical holographic computations for true-life scenes,” Opt. Express 18(4), 3345–3351 (2010).
    [Crossref] [PubMed]
  12. D. Im, E. Moon, Y. Park, D. Lee, J. Hahn, and H. Kim, “Phase-regularized polygon computer-generated holograms,” Opt. Lett. 39(12), 3642–3645 (2014).
    [Crossref] [PubMed]
  13. R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
    [Crossref]
  14. E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35(20), 3399–3401 (2010).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (1)

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21(2), 023002 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

2008 (2)

2005 (1)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Ahrenberg, L.

Benzie, P.

Buckley, E.

Chen, B.-C.

Dong, J.-W.

Hahn, J.

Häussler, R.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

He, H.-X.

Im, D.

Jia, J.

Kim, H.

Lee, B.

Lee, D.

Leister, N.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Li, X.

Liu, J.

Liu, Y.-Z.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Magnor, M.

Matsushima, K.

Missbach, R.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Moon, E.

Nakahara, S.

Nishi, H.

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21(2), 023002 (2012).
[Crossref]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50(34), H245–H252 (2011).
[Crossref] [PubMed]

Pan, Y.

Park, Y.

Pu, Y.-Y.

Reichelt, S.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Schwerdtner, A.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Wakunami, K.

Wang, H.-Z.

Wang, Y.

Watson, J.

Yamaguchi, M.

Yamashita, H.

Zhang, Z.

Zschau, E.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Appl. Opt. (7)

J. Electron. Imaging (2)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21(2), 023002 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry for fully analytic triangular-mesh-based CGH synthesis.
Fig. 2
Fig. 2 Geometry for phase matching of the meshes.
Fig. 3
Fig. 3 Dark line artifact removal in (a) converging or (b) diverging carrier wave case.
Fig. 4
Fig. 4 Numerical reconstruction for plane carrier wave: (a) Before and (b) after the phase bias matching.
Fig. 5
Fig. 5 Numerical reconstruction for plane, converging, and diverging carrier wave cases.
Fig. 6
Fig. 6 Numerical reconstruction for axially extended object: (a) Before and (b) after the phase matching.
Fig. 7
Fig. 7 Optical reconstruction result: (a) Plane, (b) converging, and (c) diverging carrier wave cases.
Fig. 8
Fig. 8 Optical reconstruction result: Two teapots with 12 cm depth difference.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G( f x,y )= G l ( f xl,yl )exp[ j2π f xl,yl,zl T c ] f zl / f z ,
G l ( f xl,yl )= G r ( A -T f xl,yl )exp[ j2π( A -T f xl,yl ) ] T b / det( A ) ,
G l ( f xl,yl )= G l ( f xl,yl 1 λ [ u xl T u yl T ] u c ),
G l ( f xl,yl )= G l ( f xl,yl )exp{ j 2π λ ( [ u xl T u yl T ] u c ) T r v,xlyl }exp{ j2π d v,vf λ },

Metrics