Abstract

We report on a unique area-selective, post-growth approach in engineering the quantum-confined potential-energy profile of InGaN/GaN quantum wells (QWs) utilizing metal/dielectric-coating induced intermixing process. This led to simultaneous realization of adjacent regions with peak emission of 2.74 eV and 2.82 eV with a high spatial resolution (~1 μm) at the coating boundary. The potential profile softening in the intermixed QW light-emitting diode (LED) was experimentally and numerically correlated, shedding light on the origin of alleviated efficiency droop from 30.5% to 16.6% (at 150 A/cm2). The technique is advantageous for fabricating high efficiency light-emitters, and is amenable to monolithic integration of nitride-based photonic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
White-light emission from InGaN/GaN quantum well microrings grown by selective area epitaxy

Guofeng Yang, Peng Chen, Shumei Gao, Guoqing Chen, Rong Zhang, and Youdou Zheng
Photon. Res. 4(1) 17-20 (2016)

Development of high performance green c-plane III-nitride light-emitting diodes

Abdullah. I. Alhassan, Nathan. G. Young, Robert. M. Farrell, Christopher. Pynn, Feng. Wu, Ahmed. Y. Alyamani, Shuji Nakamura, Steven. P. DenBaars, and James. S. Speck
Opt. Express 26(5) 5591-5601 (2018)

Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode

Chih-Yen Chen, Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen, Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen, Yu-Feng Yao, Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu
Opt. Express 20(10) 11321-11335 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [Crossref]
  2. Y. P. Zhang, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, L. C. Wang, Z. Kyaw, N. Hasanov, B. B. Zhu, S. P. Lu, X. W. Sun, and H. V. Demir, “Nonradiative recombination - critical in choosing quantum well number for InGaN/GaN light-emitting diodes,” Opt. Express 23(3), A34–A42 (2015).
    [Crossref]
  3. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
    [Crossref]
  4. S. Chen, A. Asahara, T. Ito, J. Zhang, B. Zhang, T. Suemoto, M. Yoshita, and H. Akiyama, “Gain-switching dynamics in optically pumped single-mode InGaN vertical-cavity surface-emitting lasers,” Opt. Express 22(4), 4196–4201 (2014).
    [Crossref] [PubMed]
  5. S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(2), 101–107 (2009).
    [Crossref]
  6. S. Watson, M. M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
    [Crossref] [PubMed]
  7. A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
    [Crossref]
  8. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
    [Crossref]
  9. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
    [Crossref] [PubMed]
  10. F. Römer and B. Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Opt. Express 22(S6Suppl 6), A1440–A1452 (2014).
    [Crossref] [PubMed]
  11. Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
    [Crossref]
  12. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
    [Crossref]
  13. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
    [Crossref]
  14. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
    [Crossref] [PubMed]
  15. C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
    [Crossref]
  16. B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, “Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer,” Opt. Express 22(1), 463–469 (2014).
    [Crossref] [PubMed]
  17. B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
    [Crossref]
  18. K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
    [Crossref] [PubMed]
  19. J. H. G. Marsh, C. J. Hamilton, O. P. Kowalski, S. D. Mcdougall, X. Liu, and B. Qui, “Method of manufacturing optical devices and related improvements,” US Patent 20030053789 (2003).
  20. C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
    [Crossref]
  21. M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
    [Crossref]
  22. C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
    [Crossref]
  23. H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
    [Crossref]
  24. K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
    [Crossref]
  25. M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
    [Crossref]
  26. H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
    [Crossref]
  27. D. G. Deppe and N. Holonyak, “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988).
    [Crossref]
  28. M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
    [Crossref]
  29. P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
    [Crossref]
  30. J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
    [Crossref]
  31. J. Crank, The Mathematics of Diffusion (Oxford University, 1979).
  32. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
    [Crossref]
  33. B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
    [Crossref]
  34. R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
    [Crossref]

2015 (2)

Y. P. Zhang, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, L. C. Wang, Z. Kyaw, N. Hasanov, B. B. Zhu, S. P. Lu, X. W. Sun, and H. V. Demir, “Nonradiative recombination - critical in choosing quantum well number for InGaN/GaN light-emitting diodes,” Opt. Express 23(3), A34–A42 (2015).
[Crossref]

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

2014 (4)

2013 (5)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

S. Watson, M. M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
[Crossref] [PubMed]

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
[Crossref]

H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
[Crossref]

2012 (2)

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

2011 (3)

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

2010 (3)

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[Crossref]

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
[Crossref]

2009 (3)

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(2), 101–107 (2009).
[Crossref]

2007 (1)

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

2004 (1)

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[Crossref]

2001 (2)

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
[Crossref]

2000 (1)

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

1999 (1)

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

1998 (1)

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

1997 (1)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

1989 (1)

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

1988 (1)

D. G. Deppe and N. Holonyak, “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988).
[Crossref]

Akiyama, H.

Allerman, A. A.

J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
[Crossref]

Alyamani, A. Y.

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

Andlauer, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Asahara, A.

Averbeck, R.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Becerra, D. L.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Birner, S.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Bryce, A. C.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Cantore, M.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Chang, C. Y.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Chang, S. P.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Chen, K.-J.

Chen, Q. Y.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Chen, S.

Chen, S. M.

Chiu, C.-H.

Chuo, C. C.

C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
[Crossref]

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

Chyi, J. I.

C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
[Crossref]

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

David, A.

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

De La Rue, R. M.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Deenapanray, P. N. K.

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

Demir, H. V.

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

DenBaars, S. P.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Deppe, D. G.

D. G. Deppe and N. Holonyak, “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988).
[Crossref]

Dierolf, V.

Efros, A.

R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
[Crossref]

El-Desouki, M. M.

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

Feezell, D.

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Fujito, K.

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Gelžinyte, K.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

Gervais, P. O.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Grundmann, M. J.

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

Grzanka, S.

Gunawan, O.

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[Crossref]

Hasanov, N.

Ho, C. Y.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Ho, N. J.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Hogg, R. A.

Holonyak, N.

D. G. Deppe and N. Holonyak, “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988).
[Crossref]

Hosler, W.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Iberl, A.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Ito, T.

Ivanov, R.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

Iveland, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Jagadish, C.

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

Janjua, B.

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

Jeynes, C.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Ji, Y.

Jiang, Q.

Jiao, X. C.

H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
[Crossref]

Jobst, B.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Johnson, N. M.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Ju, Z. G.

Jun, J.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Kelly, A. E.

Kennedy, K.

Krusor, B. S.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Ku, P. H.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Kubis, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Kuo, H. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Kuo, H.-C.

Kuo, Y.-K.

Kyaw, Z.

Lan, Y. P.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Lan, Y.-P.

Lee, C. M.

C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
[Crossref]

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

Lee, P.-T.

Leszczynski, M.

Li, J. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Li, Q.

J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
[Crossref]

Lifshitz, E.

R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
[Crossref]

Lin, B.-C.

Lin, C. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Lin, C.-C.

Lin, Y. T.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Liu, G.

Liu, H. Y.

Liu, W.

Lu, S. P.

Lu, T. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Lu, Z. H.

Marcinkevicius, S.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

Marsh, J. H.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Martinelli, L.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Matcher, S. J.

McCluskey, M. D.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Najda, S. P.

Nakamura, S.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(2), 101–107 (2009).
[Crossref]

Nee, T. E.

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

Ng, T. K.

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

Norman, D. P.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

O’Neill, M.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Ong, T. K.

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[Crossref]

Ooi, B. S.

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[Crossref]

Pan, C.

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Peretti, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Perlin, P.

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Poplawsky, J. D.

Riechert, H.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Roberts, J. S.

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

Romano, L. T.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Römer, F.

Sabathil, M.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Schuster, M.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Seo, H. W.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Shih, M.-H.

Speck, J. S.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Stommer, R.

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

Suemoto, T.

Sun, X. W.

Suski, T.

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

Tan, M. M.

Tan, S. T.

Tanaka, S.

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Tansu, N.

H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
[Crossref]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[Crossref]

Targowski, G.

Trellakis, A.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Tu, L. W.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Vaxenburg, R.

R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
[Crossref]

Vogl, P.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

Wang, C. H.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Wang, C.-H.

Wang, L. C.

Wang, S. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Watson, S.

Weisbuch, C.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Wierer, J. J.

J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
[Crossref]

Witzigmann, B.

Wu, F.

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Yang, H. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

Yoshita, M.

Yuan, L.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

Zhang, B.

Zhang, J.

Zhang, X. L.

Zhang, Y. P.

Zhang, Z. Y.

Zhang, Z.-H.

Zhao, H.

Zhao, H. P.

H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
[Crossref]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[Crossref]

Zhao, Y.

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Zhou, K. J.

Zhu, B. B.

Zibold, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Appl. Phys. Express (2)

Y. Zhao, S. Tanaka, C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Appl. Phys. Lett. (9)

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(3), 314–316 (2001).
[Crossref]

M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. 73(9), 1281–1283 (1998).
[Crossref]

C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett. 76(26), 3902–3904 (2000).
[Crossref]

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
[Crossref]

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett. 94(20), 201907 (2009).
[Crossref]

M. O’Neill, A. C. Bryce, J. H. Marsh, R. M. De La Rue, J. S. Roberts, and C. Jeynes, “Multiple quantum well optical waveguides with large absorption edge blue shift produced by boron and fluorine impurity-induced disordering,” Appl. Phys. Lett. 55(14), 1373–1375 (1989).
[Crossref]

J. J. Wierer, A. A. Allerman, and Q. Li, “Silicon impurity-induced layer disordering of AlGaN/AlN superlattices,” Appl. Phys. Lett. 97(5), 051907 (2010).
[Crossref]

R. Vaxenburg, E. Lifshitz, and A. Efros, “Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102(3), 031120 (2013).
[Crossref]

Electrochem. Solid-State Lett. (1)

P. N. K. Deenapanray and C. Jagadish, “Effect of stress on impurity-free quantum well intermixing,” Electrochem. Solid-State Lett. 4(2), G11–G13 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[Crossref]

IEEE Photon. J. (1)

B. Janjua, T. K. Ng, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Enhancement of hole confinement by monolayer insertion in asymmetric quantum-barrier UVB light emitting diodes,” IEEE Photon. J. 6(2), 1–9 (2014).
[Crossref]

IEEE Trans. Electron. Dev. (1)

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron. Dev. 54(9), 2137–2142 (2007).
[Crossref]

J. Appl. Phys. (3)

D. G. Deppe and N. Holonyak, “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988).
[Crossref]

K. Gelžinytė, R. Ivanov, S. Marcinkevicius, Y. Zhao, D. L. Becerra, S. Nakamura, S. P. DenBaars, and J. S. Speck, “High spatial uniformity of photoluminescence spectra in semipolar (202¯1) plane InGaN/GaN quantum wells,” J. Appl. Phys. 117(2), 023111 (2015).
[Crossref]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[Crossref]

J. Disp. Technol. (1)

H. P. Zhao, X. C. Jiao, and N. Tansu, “Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes,” J. Disp. Technol. 9(4), 199–205 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, “Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data,” J. Phys. D Appl. Phys. 32(10A), A56–A60 (1999).
[Crossref]

MRS Bull. (1)

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(2), 101–107 (2009).
[Crossref]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Opt. Express (6)

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[Crossref] [PubMed]

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, “Quantum dot selective area intermixing for broadband light sources,” Opt. Express 20(24), 26950–26957 (2012).
[Crossref] [PubMed]

B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, “Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer,” Opt. Express 22(1), 463–469 (2014).
[Crossref] [PubMed]

S. Chen, A. Asahara, T. Ito, J. Zhang, B. Zhang, T. Suemoto, M. Yoshita, and H. Akiyama, “Gain-switching dynamics in optically pumped single-mode InGaN vertical-cavity surface-emitting lasers,” Opt. Express 22(4), 4196–4201 (2014).
[Crossref] [PubMed]

F. Römer and B. Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Opt. Express 22(S6Suppl 6), A1440–A1452 (2014).
[Crossref] [PubMed]

Y. P. Zhang, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, L. C. Wang, Z. Kyaw, N. Hasanov, B. B. Zhu, S. P. Lu, X. W. Sun, and H. V. Demir, “Nonradiative recombination - critical in choosing quantum well number for InGaN/GaN light-emitting diodes,” Opt. Express 23(3), A34–A42 (2015).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Phys. Rev. Lett. (1)

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Other (2)

J. H. G. Marsh, C. J. Hamilton, O. P. Kowalski, S. D. Mcdougall, X. Liu, and B. Qui, “Method of manufacturing optical devices and related improvements,” US Patent 20030053789 (2003).

J. Crank, The Mathematics of Diffusion (Oxford University, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of QW intermixing. (b) Schematic drawing of area-selective intermixing technique presented in this work. (c) Staggered plot of normalized PL spectra from as-grown sample (black), SiO2 capped region after RRTA (red), and Mo:SiO2 capped region after RRTA (blue). The peak blueshift was obtained in the Mo:SiO2 capped region. The peak energy values are indicated with the respective FWHM values indicated in brackets. (d) PL peak energy line-scan across the non-intermixed region (i.e. SiO2 coated), and intermixed region (i.e. Mo:SiO2 coated). The red dash lines indicate the boundary of the two regions, while the insets represent the schematic band profiles in non-intermixed region (left) and intermixed region (right).
Fig. 2
Fig. 2 Plots of: (a) XRD θ-2θ scans, (b) RBS spectra of as-grown, non-intermixed and intermixed InGaN/GaN QWs.
Fig. 3
Fig. 3 The simulated plots of: (a) band profiles of as-grown QW and intermixed QW with diffusion length of 1 Å, 5 Å and 10 Å; (b) peak emission energy as a function of Ld (with experimental result labeled); (c) strain tensor in as-grown QW and intermixed QW with varies of diffusion lengths; (d) Auger recombination rate (RAuger) and ratio of radiative recombination rate (Rradiative) to the total recombination rate (Rtotal) as a function of Ld.
Fig. 4
Fig. 4 (a) EL spectra of as-grown, intermixed and non-intermixed LEDs. The peak energy values are indicated with the respective FWHM values indicated in brackets. (b) EQE vs. injection current density of as-grown, intermixed and non-intermixed InGaN/GaN QWs. Inset: voltage-current (V-I) relations of as-grown and intermixed device. The percentage of EQE droop at 150 A/cm2 is indicated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C( z )= 1 2 C 0 [ erf( hz L d )+erf( h+z L d ) ]

Metrics