Abstract

An optical dispersion compensator (ODC) with negative dispersion value in optical line terminal (OLT) is proposed to manage the chromatic dispersion of 10 Gb/s upstream directly-modulated signals from users with 100 km differential distances, achieving a maximal 51.9 dB loss budget thanks to the positive chirp of the directly-modulated signals and the characteristics of access networks that lower loss budget is required for the users at shorter transmission distance. The optimal dispersion value of the ODC is determined by the maximal distance of the users and the objective is to guarantee the loss budget monotonically improved with the increase of reach, therefore supporting differential reach. Experimental results show that it is a potential solution for practical implementation of long-reach and high splitting-ratio time and wavelength division multiplexed passive optical network (TWDM-PON).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a Symmetric 40  Gbit/s TWDM-PON Over 40  km Passive Reach Using 10  G Burst-Mode DML and EDC for Upstream Transmission [Invited]

Yong Guo, Songlin Zhu, Guohua Kuang, Yongjia Yin, Dezhi Zhang, and Xin Liu
J. Opt. Commun. Netw. 7(3) A363-A371 (2015)

28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON

Zhengxuan Li, Lilin Yi, Xiaodong Wang, and Weisheng Hu
Opt. Express 23(16) 20249-20256 (2015)

Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system

Meihua Bi, Shilin Xiao, Hao He, Lilin Yi, Zhengxuan Li, Jun Li, Xuelin Yang, and Weisheng Hu
Opt. Express 21(14) 16528-16535 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Mahgerefteh, Y. Matsui, X. Zheng, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp Managed Laser (CML): A compact transmitter for dispersion tolerant 10Gbps networking applications,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2006, Paper OWC6.
  2. L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
    [Crossref]
  3. N. Cheng, X. Yan, N. Chand, and F. Effenberger, “10 Gb/s Upstream Transmission in TWDM PON Using Duobinary and PAM-4 Modulations with Directly Modulated Tunable DBR Laser,” presented at the Asia Communications and Photonics Conference (ACP), Nov.2013, Paper ATh3E.4.
    [Crossref]
  4. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).
  5. Y. Guo, S. Zhu, G. Kuang, Y. Yin, Y. Gao, D. Zhang, and L. Liu, “Demonstration of 10G Burst-Mode DML and EDC in Symmetric 40Gbit/s TWDM-PON over 40km Passive Reach,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2014, Paper Tu2C.6.
    [Crossref]
  6. D. Qian, E. Mateo, and M. Huang, “A 105km reach fully passive 10G-PON using a novel digital OLT,” presented at the European Conference of Optical Communications (ECOC), Sep. 2012, Paper Tu.1.B.2.
    [Crossref]
  7. B. Charbonnier, F. Saliou, B. LeGuyader, and P. Chanclou, “Versatile customers, do we have FTTH solutions,” presented at the European Conference of Optical Communications (ECOC), Sep. 2014, Paper Th.2.6.1.
    [Crossref]
  8. Z. Li, L. Yi, and W. Hu, “Comparison of Downstream Transmitters for High Loss Budget of Long-Reach 10G-PON,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2014, Paper Tu2C.4.
    [Crossref]
  9. D. Borne, V. Veljanovski, E. Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation”, presented at the Optical Fiber Communication Conference (OFC), Mar. 2007, Paper OThS5.
  10. D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” presented at the European Conference of Optical Communications (ECOC), Sep. 2014, Paper PD1.4.
    [Crossref]
  11. B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
    [Crossref]

2014 (1)

2013 (1)

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

1994 (1)

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[Crossref]

Bi, M.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Franz, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[Crossref]

He, H.

Hu, W.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Junginger, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[Crossref]

Li, Z.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Wedding, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[Crossref]

Wei, W.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

Xiao, S.

Yi, L.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON with 39-dB Power Budget,” IEEE Photon. Technol. Lett. 25(7), 644–647 (2013).
[Crossref]

J. Lightwave Technol. (2)

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12(10), 1720–1727 (1994).
[Crossref]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

Other (8)

Y. Guo, S. Zhu, G. Kuang, Y. Yin, Y. Gao, D. Zhang, and L. Liu, “Demonstration of 10G Burst-Mode DML and EDC in Symmetric 40Gbit/s TWDM-PON over 40km Passive Reach,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2014, Paper Tu2C.6.
[Crossref]

D. Qian, E. Mateo, and M. Huang, “A 105km reach fully passive 10G-PON using a novel digital OLT,” presented at the European Conference of Optical Communications (ECOC), Sep. 2012, Paper Tu.1.B.2.
[Crossref]

B. Charbonnier, F. Saliou, B. LeGuyader, and P. Chanclou, “Versatile customers, do we have FTTH solutions,” presented at the European Conference of Optical Communications (ECOC), Sep. 2014, Paper Th.2.6.1.
[Crossref]

Z. Li, L. Yi, and W. Hu, “Comparison of Downstream Transmitters for High Loss Budget of Long-Reach 10G-PON,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2014, Paper Tu2C.4.
[Crossref]

D. Borne, V. Veljanovski, E. Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation”, presented at the Optical Fiber Communication Conference (OFC), Mar. 2007, Paper OThS5.

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” presented at the European Conference of Optical Communications (ECOC), Sep. 2014, Paper PD1.4.
[Crossref]

D. Mahgerefteh, Y. Matsui, X. Zheng, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp Managed Laser (CML): A compact transmitter for dispersion tolerant 10Gbps networking applications,” presented at the Optical Fiber Communication Conference (OFC), Mar. 2006, Paper OWC6.

N. Cheng, X. Yan, N. Chand, and F. Effenberger, “10 Gb/s Upstream Transmission in TWDM PON Using Duobinary and PAM-4 Modulations with Directly Modulated Tunable DBR Laser,” presented at the Asia Communications and Photonics Conference (ACP), Nov.2013, Paper ATh3E.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 System architecture of NG-PON2.
Fig. 2
Fig. 2 The measured group delay (a) and calculated dispersion curve (b) of TDC module at dispersion of 1000 ps/nm.
Fig. 3
Fig. 3 Eye diagrams of 10-Gb/s upstream signals with different transmission distances for ODC at −2100 ps/nm.
Fig. 4
Fig. 4 The sensitivity variation with driving voltage, bias current of the DML and the dispersion value.
Fig. 5
Fig. 5 The sensitivity variation with transmission distance for different dispersion values.
Fig. 6
Fig. 6 The BER evolution with different transmission distances at dispersion value of −2450 ps/nm.

Tables (1)

Tables Icon

Table 1 Loss budget (LB) evaluation.

Metrics