Abstract

We have developed a graphene sticker prepared by simply detaching graphene directly grown on a self-catalytic γ-Al2O3 substrate with a spin-coated polymer film. Our scheme is highlighted by the metal-free and bare-hand manageable process. The sticker is attached onto the flat surface of a D-shaped fiber to demonstrate an efficient fiber mode-locked laser. The 1-ps output pluses have the center wavelength, spectral width, and repetition rate of 1558.2 nm, 5.42 nm, and 4.77 MHz, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber

Tao Chen, Changrui Liao, D. N. Wang, and Yiping Wang
Appl. Opt. 53(13) 2828-2832 (2014)

Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber

Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 21(10) 12797-12802 (2013)

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski
Opt. Express 20(17) 19463-19473 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  2. P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  5. Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
    [Crossref] [PubMed]
  6. Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
    [Crossref]
  7. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [Crossref]
  8. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  9. J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
    [Crossref]
  10. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
    [Crossref] [PubMed]
  11. G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-doped fiber laser mode-locked by CVD-graphene saturable absorber,” J. Lightwave Technol. 30(17), 2770–2775 (2012).
    [Crossref]
  12. J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
    [Crossref]
  13. J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
    [Crossref] [PubMed]
  14. R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
    [Crossref] [PubMed]
  15. O. V. Yazyev and A. Pasquarello, “Effect of metal elements in catalytic growth of carbon nanotubes,” Phys. Rev. Lett. 100(15), 156102 (2008).
    [Crossref] [PubMed]
  16. C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
    [Crossref]
  17. M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
    [Crossref]

2013 (4)

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
[Crossref] [PubMed]

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

2012 (3)

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-doped fiber laser mode-locked by CVD-graphene saturable absorber,” J. Lightwave Technol. 30(17), 2770–2775 (2012).
[Crossref]

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

2011 (2)

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

2009 (1)

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

2008 (2)

Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

O. V. Yazyev and A. Pasquarello, “Effect of metal elements in catalytic growth of carbon nanotubes,” Phys. Rev. Lett. 100(15), 156102 (2008).
[Crossref] [PubMed]

2006 (1)

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Abramski, K. M.

Avouris, P.

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Bae, M.-K.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Bae, S.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Bao, Q.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Basset, J. M.

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Cai, Z.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Cheng, H.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Choi, E. J.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Copéret, C.

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Delbecq, F.

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, L.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fu, H.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Grodecki, K.

Ha, J. S.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

Han, W.-S.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hong, B. H.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Huang, T.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Jang, S.-Y.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Jankiewicz, Z.

Jhon, Y. M.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Jiang, J.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Joubert, J.

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Jung, M.

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, J.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

Kim, J. Y.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, K. H.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

Kim, K. S.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Koo, J.

Krakoviack, V.

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Lee, C.

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Lee, C. J.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

Lee, J. H.

Lee, K.

Lee, S.

Li, L.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Luo, Z.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Ma, S.

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

Maruyama, S.

Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Paletko, P.

Park, J.

Pasquarello, A.

O. V. Yazyev and A. Pasquarello, “Effect of metal elements in catalytic growth of carbon nanotubes,” Phys. Rev. Lett. 100(15), 156102 (2008).
[Crossref] [PubMed]

Pasternak, I.

Qi, W.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Salameh, A.

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Sautet, P.

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shen, Z.

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

Shim, J. H.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

Sobon, G.

Song, Y.-W.

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21(17), 20062–20072 (2013).
[Crossref] [PubMed]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Sotor, J.

Strupinski, W.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, D.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Wang, J.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Wischert, R.

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

Xu, H.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Yamashita, S.

Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Yazyev, O. V.

O. V. Yazyev and A. Pasquarello, “Effect of metal elements in catalytic growth of carbon nanotubes,” Phys. Rev. Lett. 100(15), 156102 (2008).
[Crossref] [PubMed]

Ye, C.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Ye, X.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Yi, M.

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

Zhang, H.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, W.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Zhang, X.

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

Zhao, L.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhong, M.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Zhou, M.

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

Zhu, H.

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

R. Wischert, C. Copéret, F. Delbecq, and P. Sautet, “Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane,” Angew. Chem. Int. Ed. Engl. 50(14), 3202–3205 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98(7), 071905 (2011).
[Crossref]

Y.-W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functionalized with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

IEEE Photon. J. (1)

J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C (1)

J. Park, K. H. Kim, J. Kim, C. J. Lee, J. H. Shim, Y.-W. Song, and J. S. Ha, “Catalyst-free growth of readily detachable nanographene on alumina,” J. Mater. Chem. C 1(39), 6438 (2013).
[Crossref]

J. Phys. Chem. B (1)

J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, and J. M. Basset, “Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites,” J. Phys. Chem. B 110(47), 23944–23950 (2006).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

M. Yi, Z. Shen, X. Zhang, and S. Ma, “Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters,” J. Phys. D Appl. Phys. 46(2), 025301 (2013).
[Crossref]

Nano Lett. (1)

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Lin, T. Huang, X. Ye, M. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. Zhu, “Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser,” Nanotechnology 24(27), 275302 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

O. V. Yazyev and A. Pasquarello, “Effect of metal elements in catalytic growth of carbon nanotubes,” Phys. Rev. Lett. 100(15), 156102 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustrations of (a) a self-catalytic γ-Al2O3 substrate for the metal-free direct growth of graphene layers (b) with high-uniformity of grain-size controllability and with large-scale-selective peeling of pure graphene, and with that of graphene with γ-Al2O3 as a dielectric.
Fig. 2
Fig. 2 (a) The camera image of the graphene sticker consists of pure graphene with spin-coated polyimide film. The sticker can be easily tailored with scissors as shown. (b) A lateral force microscope image taken from the sticker. (c) Diameter distribution of grains evaluated from (b). The measured (d) transmittance, (e) Raman spectrum, and (f) High-resolution C1s profiles of XPS taken from the graphene grown on γ-Al2O3 substrate.
Fig. 3
Fig. 3 (a) Schematic illustration of the graphene sticker attaching onto a D-shaped fiber to fabricate a passive mode-locker. The camera image below shows the fabricated graphene passive mode-locker. (b) Schematic illustration of the fiber ring cavity for the passively mode-locked laser consisting of a high power (HP) EDFA, a 9:1 coupler, isolators, a polarization controller, a 20-m SMF and the graphene mode-locker.
Fig. 4
Fig. 4 Mode-locked laser characteristics: (a) the pulse waveforms, (b) the autocorrelation trace of the output, and (c) the optical spectrum of the pulses.

Metrics