Abstract

We propose an adaptive detection technique in super-Nyquist wavelength-division-multiplexed (WDM) polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems, where a QPSK signal is digitally converted to a quadrature n-level polybinary signal followed by a MLSE detector at the receiver, and study the performance of quadrature-duobinary and quadrature four-level polybinary signals using this detection technique. We change the level of the quadrature-polybinary modulation at the coherent receiver according to the channel spacing of a super-Nyquist system. Numerical studies show that the best performance can be achieved by choosing different modulation levels at the receiver in adaption to the channel spacing. In the experiment, we demonstrate the transmission of 3-channel 112-Gbit/s PDM-QPSK signals at a 20-GHz channel spacing, which is detected as a quadrature four-level polybinary signal, with performance comparable to PDM 16-ary quadrature-amplitude modulation (16QAM) at the same bit rate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping

Cheng Xu, Guanjun Gao, Sai Chen, Jie Zhang, Ming Luo, Rong Hu, and Qi Yang
Opt. Express 24(23) 26678-26686 (2016)

Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km

Koji Igarashi, Takehiro Tsuritani, Itsuro Morita, Yukihiro Tsuchida, Koichi Maeda, Masateru Tadakuma, Tsunetoshi Saito, Kengo Watanabe, Katsunori Imamura, Ryuichi Sugizaki, and Masatoshi Suzuki
Opt. Express 22(2) 1220-1228 (2014)

Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
    [Crossref]
  2. G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [Crossref]
  3. J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “Transmission of 96 100-Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,” J. Lightwave Technol. 29(4), 491–498 (2011).
    [Crossref]
  4. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
    [Crossref]
  5. J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol. 31(7), 1073–1078 (2013).
    [Crossref]
  6. J. Yu, J. Zhang, Z. Dong, Z. Jia, H.-C. Chien, Y. Cai, X. Xiao, and X. Li, “Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs,” Opt. Express 21(13), 15686–15691 (2013).
    [Crossref] [PubMed]
  7. J. Zhang, J. Yu, Z. Jia, and H. C. Chien, “400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” J. Lightwave Technol. 32(19), 3239–3246 (2014).
    [Crossref]
  8. S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photon. Technol. Lett. 27(1), 105–108 (2015).
    [Crossref]
  9. C. Xie and S. Chen, “Quadrature Duobinary Modulation and Detection,” in Proc. OFC, paper W4K.6 (2015).
  10. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17(11), 2235–2248 (1999).
    [Crossref]
  11. J. J. V. Olmos, L. F. Suhr, B. Li, and I. T. Monroy, “Five-level polybinary signaling for 10 Gbps data transmission systems,” Opt. Express 21(17), 20417–20422 (2013).
    [Crossref] [PubMed]
  12. S. Chen, C. Xie, and J. Zhang, “Advanced detection of super-Nyquist WDM QPSK signals with 5-bit/s/Hz spectral efficiency,” in Proc. OFC, paper Th2A.11 (2015).
  13. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol, COM 12(4), 128–135 (1964).
    [Crossref]
  14. C. Xie and G. Raybon, “Digital PLL based frequency offset compensation and carrier phase estimation for 16-QAM coherent optical communication systems,” in Proc. ECOC, paper Mo.1.A.2 (2012).
    [Crossref]
  15. A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceedings of ECOC, paper Th4.1.5 (2004).

2015 (1)

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photon. Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

2014 (2)

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
[Crossref]

J. Zhang, J. Yu, Z. Jia, and H. C. Chien, “400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” J. Lightwave Technol. 32(19), 3239–3246 (2014).
[Crossref]

2013 (3)

2011 (2)

1999 (1)

1972 (1)

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

1964 (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol, COM 12(4), 128–135 (1964).
[Crossref]

Bergano, N.

Cai, J.-X.

Cai, Y.

Chandrasekhar, S.

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
[Crossref]

Chen, S.

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photon. Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

Chi, N.

Chien, H. C.

Chien, H.-C.

Conradi, J.

Davidson, C. R.

Dong, Z.

Forney, G. D.

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Foursa, D. G.

Hoshida, T.

Jia, Z.

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol, COM 12(4), 128–135 (1964).
[Crossref]

Li, B.

Li, J.

Li, X.

Liu, X.

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
[Crossref]

Lucero, A.

Mohs, G.

Monroy, I. T.

Olmos, J. J. V.

Patterson, W.

Pilipetskii, A.

Rasmussen, J. C.

Shao, Y.

Sinkin, O.

Suhr, L. F.

Tao, L.

Tao, Z.

Walklin, S.

Winzer, P. J.

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
[Crossref]

Xiao, X.

Xie, C.

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photon. Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

Yan, W.

Yu, J.

Zhang, H.

Zhang, J.

IEEE Photon. Technol. Lett. (1)

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photon. Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

IEEE Signal Process. Mag. (1)

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s superchannel transmission: an overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag. 31(2), 16–24 (2014).
[Crossref]

IEEE Trans. Commun. Technol, COM (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol, COM 12(4), 128–135 (1964).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Other (4)

S. Chen, C. Xie, and J. Zhang, “Advanced detection of super-Nyquist WDM QPSK signals with 5-bit/s/Hz spectral efficiency,” in Proc. OFC, paper Th2A.11 (2015).

C. Xie and S. Chen, “Quadrature Duobinary Modulation and Detection,” in Proc. OFC, paper W4K.6 (2015).

C. Xie and G. Raybon, “Digital PLL based frequency offset compensation and carrier phase estimation for 16-QAM coherent optical communication systems,” in Proc. ECOC, paper Mo.1.A.2 (2012).
[Crossref]

A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceedings of ECOC, paper Th4.1.5 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Generation of poly-binary signals with delay-&-add operations. (b) Conversion from a QPSK constellation to a Q-4PB constellation using a z-transfer function.
Fig. 2
Fig. 2 (a) Transmitter side of the super-Nyquist PDM-QPSK scheme. (b) Receiver side of the super-Nyquist PDM-QPSK scheme with quadrature-polybinary detection. (c) Constellations before and after carrier recovery for QPSK, QDB and Q-4PB detection of a QPSK signal at the receiver.
Fig. 3
Fig. 3 (a) Receiver side DSP procedure for QPSK, 8QAM and 16QAM systems. (b) The required OSNR at BER of 10−3 v.s. channel spacing in 3-channel 112-Gbit/s PDM-QPSK (detected as QPSK, QDB and Q-4PB signals), PDM-8QAM and PDM-16QAM systems.
Fig. 4
Fig. 4 (a) Experiment setup in BTB configuration. (b) The spectra of QPSK and 16QAM WDM signals. (c) The transmission loop setup.
Fig. 5
Fig. 5 BTB results of the 112-Gbit/s super-Nyquist PDM-QPSK system (detected as QPSK, QDB, and Q-4PB signals) and 112-Gbit/s PDM-16QAM system at 20-GHz channel spacing.
Fig. 6
Fig. 6 (a) BER vs. total launch power after 960-km transmission. (b) BER vs. distance at 2-dBm total launch power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S(f)= (n1) 2 A 2 T 4 sin c 2 [ (n1)fT ]

Metrics