Abstract

Single-mode Ge28Sb12Se60 strip waveguides, fabricated with thermal evaporation and lift-off, were demonstrated at 1.03 µm. The linear and nonlinear optical properties of these waveguides were shown to be similar to bulk samples, with differences attributed to small variations in composition of ~4 atomic % or less. From z-scan measurements at 1.03 µm using circularly polarized, ~200 fs pulses at 374 kHz, Ge28Sb12Se60 was found to have a nonlinear refractive index ~130 x fused silica and a two-photon absorption coefficient of 3.5 cm/GW. Given the large two-photon absorption coefficient, this material shows promise for optical limiting applications at 1 µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss waveguides in ultrafast laser-deposited As 2 S 3 chalcogenide films

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies
J. Opt. Soc. Am. B 20(9) 1844-1852 (2003)

Ultrafast all-optical chalcogenide glass photonic circuits

Vahid G. Ta’eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R.E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, and Barry Luther-Davies
Opt. Express 15(15) 9205-9221 (2007)

Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices

Keijiro Suzuki, Kazuhiko Ogusu, and Makoto Minakata
Opt. Express 13(21) 8634-8641 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  2. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
    [Crossref] [PubMed]
  3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  4. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  5. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  6. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
    [Crossref]
  7. P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
    [Crossref]
  8. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, Inc., 1991).
  9. K. Ogusu, K. Suzuki, and H. Nishio, “Simple and accurate measurement of the absorption coefficient of an absorbing plate by use of the Brewster angle,” Opt. Lett. 31(7), 909–911 (2006).
    [Crossref] [PubMed]
  10. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).
  11. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  12. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [Crossref]
  13. B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
    [Crossref] [PubMed]
  14. R. W. Boyd, Nonlinear Optics (Academic Press, 2009).
  15. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
    [Crossref]
  16. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28(15), 1365–1367 (2003).
    [Crossref] [PubMed]
  17. M. Hass, J. W. Davisson, H. B. Rosenstock, and J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14(5), 1128–1130 (1975).
    [Crossref] [PubMed]
  18. Vitron IG-5 Datasheet, http://www.vitron.de/datasheets/VITRON%20IG-5%20Datenblatt%20Jan%202015.pdf .
  19. Schott Infrared Chalcogenide Glasses Datasheet, http://www.schott.com/advanced_optics/english/download/schott-infrared-chalcog-glasses-family-sheet-october-2013-eng.pdf .
  20. K. Shinkawa and K. Ogusu, “Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region,” Opt. Express 16(22), 18230–18240 (2008).
    [Crossref] [PubMed]
  21. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
    [Crossref]
  22. M. Olivier, J. C. Tchahame, P. Nĕmec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014).
    [Crossref]
  23. K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200(1), 714–718 (1996).
    [Crossref]
  24. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  25. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
    [Crossref]
  26. M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  27. Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
    [Crossref]
  28. W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
    [Crossref]
  29. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
    [Crossref]
  30. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [Crossref]
  31. A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
    [Crossref]
  32. A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
    [Crossref]
  33. R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
    [Crossref]
  34. A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
    [Crossref]
  35. V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).
  36. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
    [Crossref] [PubMed]
  37. M. Popovic, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper ITuD4.
  38. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  39. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
    [Crossref]
  40. T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
    [Crossref]
  41. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
    [Crossref]
  42. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
    [Crossref]
  43. J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
    [Crossref] [PubMed]
  44. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref] [PubMed]

2014 (2)

2011 (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

2009 (2)

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

2008 (4)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

K. Shinkawa and K. Ogusu, “Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region,” Opt. Express 16(22), 18230–18240 (2008).
[Crossref] [PubMed]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
[Crossref] [PubMed]

2007 (5)

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

2006 (1)

2005 (1)

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

2004 (2)

T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).

2003 (3)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28(15), 1365–1367 (2003).
[Crossref] [PubMed]

2002 (1)

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

2000 (3)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

1999 (2)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

1998 (1)

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

1997 (1)

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

1996 (2)

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
[Crossref] [PubMed]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200(1), 714–718 (1996).
[Crossref]

1995 (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1987 (1)

P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

1975 (1)

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

Agarwal, A.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

Almeida, R. M.

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

Arcondo, B.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

Babiskin, J.

Balan, V.

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).

Barthélémy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Baudet, E.

Besse, V.

Boidin, R.

Boudebs, G.

M. Olivier, J. C. Tchahame, P. Nĕmec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014).
[Crossref]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

Buckley, J. R.

Bureau, B.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

Carlie, N.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Cassagne, C.

Chauvet, M.

Chen, G.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Chen, H.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Chen, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Cheong, S.-W.

Clark, W. G.

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Columbo, L.

P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Crichton Hutchings, D.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Davisson, J. W.

DeCorby, R. G.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Dwivedi, P. K.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Elliott, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Falconieri, M.

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

Fan, Y.-X.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Feng, N.-N.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Fontana, M.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

Gai, X.

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Gaylord, S.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Gilliot, P.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
[Crossref] [PubMed]

Gu, B.

B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
[Crossref] [PubMed]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hass, M.

Haugen, C. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

He, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Hirlimann, C.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
[Crossref] [PubMed]

Hisakuni, H.

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200(1), 714–718 (1996).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Hu, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Huang, X.-Q.

Hwang, H. Y.

Ilday, F. Ö.

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

Ji, W.

B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
[Crossref] [PubMed]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Kasap, S. O.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Katsufuji, T.

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Kimerling, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Klocek, P.

P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

Kolovov, A. V.

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lami, J.-F.

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
[Crossref] [PubMed]

Lenz, G.

Liang, T.-K.

T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Lim, H.

Lines, M. E.

Liu, L.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Liu, W.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Lucas, J.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

Luther-Davies, B.

Madden, S.

Massera, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

McMullinm, J. N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

Monteil, A.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

Nazabal, V.

Nemec, P.

Nguyen, H. T.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Nishio, H.

Ogusu, K.

Olivier, M.

Oyanagi, H.

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Pai, M. M.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Petit, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Piarristeguy, A.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

Ponnampalam, N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

Pradel, A.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Renversez, G.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[Crossref] [PubMed]

Rosenstock, H. B.

Roy, A.

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

Santos, L. F.

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, X.

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Shinkawa, K.

Simens, A.

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

Slusher, R. E.

Smektala, F.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

Spälter, S.

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Suzuki, K.

Tanaka, K.

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200(1), 714–718 (1996).
[Crossref]

Tarasov, V.

Tchahame, J. C.

Troles, J.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

Tsang, H.-K.

T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Ureña, A.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vigreux, C.

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).

Vigreux-Bercovici, C.

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

Wang, H.-T.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

Wang, R.

Wang, T.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, W.

Wise, F. W.

Xu, L.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Xu, Y.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Yang, Z.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Zhang, Q.

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

Zimmermann, J.

Adv. Phys. (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[Crossref]

T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

J. Appl. Phys. (1)

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007).
[Crossref]

J. Non-Cryst. Solids (8)

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200(1), 714–718 (1996).
[Crossref]

A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998).
[Crossref]

R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999).
[Crossref]

J. Optoelectron. Adv. Mater. (2)

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002).

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004).

J. Phys. Chem. Solids (1)

A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007).
[Crossref]

J. Solid State Chem. (1)

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Opt. Commun. (1)

W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Phys. Rev. B (1)

A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Phys. Rev. Lett. (1)

J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996).
[Crossref] [PubMed]

Science (2)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (5)

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, Inc., 1991).

Vitron IG-5 Datasheet, http://www.vitron.de/datasheets/VITRON%20IG-5%20Datenblatt%20Jan%202015.pdf .

Schott Infrared Chalcogenide Glasses Datasheet, http://www.schott.com/advanced_optics/english/download/schott-infrared-chalcog-glasses-family-sheet-october-2013-eng.pdf .

R. W. Boyd, Nonlinear Optics (Academic Press, 2009).

M. Popovic, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper ITuD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Example closed aperture (a) and (b) and open aperture (c) and (d) z-scan traces taken on Ge28Sb12Se60. Note that the traces on the left, (a) and (c), were taken at 0.374 MHz with I0 = 88.5 MW/cm2. The traces on the right, (b) and (d) were taken at 37.4 MHz with I0 = 35 MW/cm2. Data is shown by the black points, and the fits are represented with red lines.
Fig. 2
Fig. 2 Plots of (a) two-photon absorption coefficient, β and (b) nonlinear refractive index, n2 of Ge28Sb12Se60 as a function of peak on-axis intensity, measured by the z-scan technique for two repetition rates, 0.374 MHz and 37.4 MHz. Errors in β and n2 are approximately 11% and 20%, respectively. At 0.374 MHz, β = 3.5 cm/GW and n2 = 3.4x10−18 m2/W. Enhanced values of β and n2 observed at the higher repetition rate are believed to be a cumulative effect caused by the photosensitivity of the material.
Fig. 3
Fig. 3 (a) Atomic composition of thin film and bulk Ge-Sb-Se samples. (b) Scanning electron micrograph of a chalcogenide strip waveguide, consisting of silicon substrate, 3-μm-thick SiO2, a 2.2-μm-wide and 45-nm-thick Ge-Sb-Se layer, and air upper cladding. (c) Simulated mode profile for the single-mode Ge-Sb-Se strip waveguide. The black dotted rectangular outline indicates the x and y position and size of the Ge-Sb-Se core relative to the mode.
Fig. 4
Fig. 4 Plot of scattered light intensity vs. distance for a single-mode Ge-Sb-Se waveguide at a wavelength of 1.03 µm. A fit to a decaying exponential yields a total loss of 2.8 ± 0.3 cm−1, or 12.2 dB/cm, for the waveguide illustrated. An average total loss of 11.9 ± 1 dB/cm is obtained for measurements on six adjacent waveguides.
Fig. 5
Fig. 5 Plot of reciprocal transmission as a function of incident peak intensity for a single-mode Ge-Sb-Se waveguide. The average effective two-photon absorption coefficient of the waveguide is measured to be 11.5 ± 0.7 cm/GW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T open = m=0 [ q 0 (z)] m (m+1) 3/2 ,
T cl 1+ 4x Δ φ 0 (1+ x 2 )(9+ x 2 ) β I 0 L eff (3 x 2 ) 2 2 (1+ x 2 )(9+ x 2 ) ,
1 T = [1 e α L wg ] β wg α I+ e α L wg ,

Metrics