Abstract

Third-harmonic generation (THG) has applications ranging from wavelength conversion to pulse characterization, and has important implications for quantum sources of entangled photons. However, on-chip THG devices are nearly unexplored because bulk techniques are difficult to adapt to integrated photonic circuits. Using sub-micrometer-wide polycrystalline anatase TiO2 waveguides, we demonstrate third-harmonic generation on a CMOS-compatible platform. We correlate higher conversion efficiencies with phase-matching between the fundamental pump mode and higher-order signal modes. Using scattered light, we estimate conversion efficiencies as high as 2.5% using femtosecond pulses, and thus demonstrate that multimode TiO2 waveguides are promising for wideband wavelength conversion and new applications ranging from sensors to triplet-photon sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient photon triplet generation in integrated nanophotonic waveguides

Michael G. Moebius, Felipe Herrera, Sarah Griesse-Nascimento, Orad Reshef, Christopher C. Evans, Gian Giacomo Guerreschi, Alán Aspuru-Guzik, and Eric Mazur
Opt. Express 24(9) 9932-9954 (2016)

Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices

Jonathan D. B. Bradley, Christopher C. Evans, Jennifer T. Choy, Orad Reshef, Parag B. Deotare, François Parsy, Katherine C. Phillips, Marko Lončar, and Eric Mazur
Opt. Express 20(21) 23821-23831 (2012)

Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation

S. Sederberg, C. J. Firby, and A. Y. Elezzabi
Opt. Express 27(4) 4990-5004 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Alasaarela, L. Karvonen, H. Jussila, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, I. Tittonen, and H. Lipsanen, “High-quality crystallinity controlled ALD TiO2 for waveguiding applications,” Opt. Lett. 38, 3980–3983 (2013).
    [Crossref] [PubMed]
  2. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).
    [Crossref] [PubMed]
  3. A. Borne, P. Segonds, B. Boulanger, C. Félix, and J. Debray, “Refractive indices, phase-matching directions and third order nonlinear coefficients of rutile TiO2 from third harmonic generation,” Opt. Mater. Express 2, 1797–1802 (2012).
    [Crossref]
  4. F. Gravier and B. Boulanger, “Third order frequency generation in TiO2 rutile and KTiOPO4,” Opt. Mater. 30, 33–36 (2007).
    [Crossref]
  5. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
    [Crossref]
  6. M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
    [Crossref]
  7. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
    [Crossref] [PubMed]
  8. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–23831 (2012).
    [Crossref] [PubMed]
  9. Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express 20, 6712–6719 (2012).
    [Crossref] [PubMed]
  10. C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express 20, 3118–3128 (2012).
    [Crossref] [PubMed]
  11. C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths,” Opt. Express 21, 18582–18591 (2013).
    [Crossref] [PubMed]
  12. T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
    [Crossref]
  13. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36, 3000–3002 (2011).
    [Crossref] [PubMed]
  14. F. Gravier and B. Boulanger, “Cubic parametric frequency generation in rutile single crystal,” Opt. Express 14, 11715–11720 (2006).
    [Crossref] [PubMed]
  15. H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
    [Crossref] [PubMed]
  16. L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
    [Crossref]
  17. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
    [Crossref]
  18. K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
    [Crossref]
  19. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
    [Crossref]
  20. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref] [PubMed]
  21. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
    [Crossref]
  22. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
    [Crossref]
  23. C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
    [Crossref] [PubMed]
  24. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003).
    [Crossref] [PubMed]
  25. We specify height measured by ellipsometry (±4 nm) and the top-dimension based on the electron-beam mask width.
  26. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).
  27. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  28. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  29. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
    [Crossref]
  30. I. A. Bufetov, M. V. Grekov, K. M. Golant, E. M. Dianov, and R. R. Khrapko, “Ultraviolet-light generation in nitrogen-doped silica fiber,” Opt. Lett. 22, 1394 (1997).
    [Crossref]
  31. A. Zheltikov, “Multimode guided-wave non-3ω third-harmonic generation by ultrashort laser pulses,” J. Opt. Soc. Am. B 22, 2263–2269 (2005).
    [Crossref]
  32. A. M. Zheltikov, “Third-harmonic generation with no signal at 3ω,” Phys. Rev. A 72, 43812 (2005).
    [Crossref]
  33. S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).
  34. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36, 190–192 (2011).
    [Crossref] [PubMed]
  35. M. Corona, K. Garay-Palmett, and A. B. URen, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84, 33823 (2011).
    [Crossref]
  36. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
    [Crossref]
  37. M. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
    [Crossref]
  38. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref] [PubMed]
  39. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  40. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  41. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref] [PubMed]

2014 (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

2013 (4)

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths,” Opt. Express 21, 18582–18591 (2013).
[Crossref] [PubMed]

T. Alasaarela, L. Karvonen, H. Jussila, A. Säynätjoki, S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, I. Tittonen, and H. Lipsanen, “High-quality crystallinity controlled ALD TiO2 for waveguiding applications,” Opt. Lett. 38, 3980–3983 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (6)

2010 (2)

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (4)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

F. Gravier and B. Boulanger, “Third order frequency generation in TiO2 rutile and KTiOPO4,” Opt. Mater. 30, 33–36 (2007).
[Crossref]

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

2006 (1)

2005 (2)

2003 (3)

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003).
[Crossref] [PubMed]

1997 (1)

1994 (1)

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

1993 (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

1990 (1)

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

1974 (1)

M. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Alasaarela, T.

Alfimov, M. V.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Bencheikh, K.

S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36, 3000–3002 (2011).
[Crossref] [PubMed]

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

Bi, Z.-F.

Bloembergen, N.

M. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[Crossref]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Bock, M.

Borne, A.

Boudrioua, A.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Boulanger, B.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Bradley, J. D. B.

Brinza, O.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Bufetov, I. A.

Burgess, I. B.

Byer, R. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

Choy, J. T.

Corcoran, B.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Corona, M.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36, 190–192 (2011).
[Crossref] [PubMed]

M. Corona, K. Garay-Palmett, and A. B. URen, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84, 33823 (2011).
[Crossref]

Das, S. K.

Debray, J.

Deotare, P. B.

Dianov, E. M.

Dong, M.-M.

Douady, J.

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Dukel’skii, K. V.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Eckardt, R. C.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Efimov, A.

Eggleton, B. J.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Elsaesser, T.

Evans, C. C.

Fedotov, A. B.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Fedrizzi, A.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Feigelson, R. S.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Fejer, M. M.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Félix, C.

Fischer, A.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Foster, M. A.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Fujiwara, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Furuhashi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Gaeta, A. L.

Garay-Palmett, K.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36, 190–192 (2011).
[Crossref] [PubMed]

M. Corona, K. Garay-Palmett, and A. B. URen, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84, 33823 (2011).
[Crossref]

Golant, K. M.

Gordon, L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Gravier, F.

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

F. Gravier and B. Boulanger, “Third order frequency generation in TiO2 rutile and KTiOPO4,” Opt. Mater. 30, 33–36 (2007).
[Crossref]

F. Gravier and B. Boulanger, “Cubic parametric frequency generation in rutile single crystal,” Opt. Express 14, 11715–11720 (2006).
[Crossref] [PubMed]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Grekov, M. V.

Grillet, C.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Grunwald, R.

Hadjoub, I.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Hamel, D. R.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Hashimoto, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Holler, S.

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Hübel, H.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
[Crossref]

Ippen, E.

Ivanov, A. A.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Jennewein, T.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Jussila, H.

Karvonen, L.

Kawai, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Khokhlov, A. V.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Khoshsima, M.

Khrapko, R. R.

Kieu, K.

Knight, J.

Kondrat’ev, Y. N.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Konorov, S. O.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Krauss, T. F.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Kuznetsova, I. N.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Levenson, A.

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

Levenson, J. A.

Levenson, M.

M. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[Crossref]

Levy, J. S.

Lipsanen, H.

Lipson, M.

Liu, X.-H.

Loncar, M.

Martí-Panameño, E. A.

Matsubara, K.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Mazur, E.

Mehravar, S.

Monat, C.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Moss, D. J.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Norwood, R. A.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Ohshiro, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Omenetto, F.

Parsy, F.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Petrov, A. N.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Peyghambarian, N.

Pfuch, A.

Phillips, K. C.

Podshivalov, A. A.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Ramelow, S.

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Resch, K. J.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Reshef, O.

Richard, S.

Route, R. R.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Russell, P.

Sakka, S.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Säynätjoki, A.

Schwanke, C.

Seeber, W.

Segonds, P.

Shalm, L. K.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).

Shevandin, V. S.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Shtyrkova, K.

Sidorov-Biryukov, D. A.

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Simon, C.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

Steinmeyer, G.

Takeuchi, S.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Taniguchi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Taylor, A.

Teraoka, I.

Tittonen, I.

Touam, T.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Tsutsui, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

U’Ren, A. B.

URen, A. B.

M. Corona, K. Garay-Palmett, and A. B. URen, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84, 33823 (2011).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Vrel, D.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Wadsworth, W.

Wang, K.-M.

Wang, L.

White, T. P.

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Woods, G. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

Wu, X.-L.

Yan, Z.

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

Yoko, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Zeilinger, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Zhang, S.-M.

Zhao, Q.-Z.

Zheltikov, A.

Zheltikov, A. M.

A. M. Zheltikov, “Third-harmonic generation with no signal at 3ω,” Phys. Rev. A 72, 43812 (2005).
[Crossref]

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Znaidi, L.

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

AIP Adv. (1)

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 32102–32105 (2011).
[Crossref]

Am. J. Phys. (1)

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Appl. Phys. Lett. (1)

M. Furuhashi, M. Fujiwara, T. Ohshiro, K. Matsubara, M. Tsutsui, M. Taniguchi, S. Takeuchi, and T. Kawai, “Embedded TiO2 waveguides for sensing nanofluorophores in a microfluidic channel,” Appl. Phys. Lett. 101, 153115 (2012).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

C. R. Phys. (1)

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8, 206–220 (2007).
[Crossref]

Electron. Lett. (1)

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasi-phase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. O. Konorov, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, Y. N. Kondrat’ev, V. S. Shevandin, K. V. Dukel’skii, A. V. Khokhlov, A. A. Podshivalov, A. N. Petrov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Generation of frequency-tunable radiation within the wavelength range of 350-600 nm through nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica threads of a microstructure fiber,” Laser Phys. 13, 1170–1174 (2003).

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Nature (1)

H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T. Jennewein, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601–603 (2010).
[Crossref] [PubMed]

Nature Photon. (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Nature Phys. (2)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and T. Jennewein, “Three-photon energy-time entanglement,” Nature Phys. 9, 19–22 (2013).
[Crossref]

Opt. Express (9)

F. Gravier and B. Boulanger, “Cubic parametric frequency generation in rutile single crystal,” Opt. Express 14, 11715–11720 (2006).
[Crossref] [PubMed]

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).
[Crossref] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20, 23821–23831 (2012).
[Crossref] [PubMed]

Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO2 formed by He ion implantation,” Opt. Express 20, 6712–6719 (2012).
[Crossref] [PubMed]

C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express 20, 3118–3128 (2012).
[Crossref] [PubMed]

C. C. Evans, K. Shtyrkova, J. D. B. Bradley, O. Reshef, E. Ippen, and E. Mazur, “Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths,” Opt. Express 21, 18582–18591 (2013).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18, 6831–6840 (2010).
[Crossref] [PubMed]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

F. Gravier and B. Boulanger, “Third order frequency generation in TiO2 rutile and KTiOPO4,” Opt. Mater. 30, 33–36 (2007).
[Crossref]

Opt. Mater. Express (1)

Opt. Quant. Electron. (1)

T. Touam, L. Znaidi, D. Vrel, I. Hadjoub, I. N. Kuznetsova, O. Brinza, A. Fischer, and A. Boudrioua, “Low optical loss nano-structured TiO2 planar waveguides by sol-gel route for photonic crystal applications,” Opt. Quant. Electron. 46, 23–37 (2013).
[Crossref]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (2)

A. M. Zheltikov, “Third-harmonic generation with no signal at 3ω,” Phys. Rev. A 72, 43812 (2005).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. URen, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84, 33823 (2011).
[Crossref]

Phys. Rev. B (1)

M. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Other (4)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
[Crossref]

We specify height measured by ellipsometry (±4 nm) and the top-dimension based on the electron-beam mask width.

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Green light generation in a polycrystalline anatase TiO2 waveguide using a 1565-nm pump: top-view optical image of the chip (left) and corresponding visible spectrum (right). The observed peak around 534 nm is shifted from the expected third-harmonic signal predicted if we consider energy conservation alone (521.7 nm).
Fig. 2
Fig. 2 Normalized scattered visible light intensity (Isig, 509 nm) as a function of propagation distance (black circles) for the waveguide cross section shown in the inset. Comparing the decay of the observed signal to separately measured visible intensity (Ivis, 520 nm, dashed green), infrared intensity (IIR, 1550 nm, dash-dot red), and the cubed infrared intensity ( I IR 3, solid blue), we infer that the visible light we observe is third-harmonic signal generated within the waveguide.
Fig. 3
Fig. 3 Visible spectra for different waveguide dimensions showing phase-matched and non-phase-matched conditions. We show the energy-shifted pump spectrum, Ip(3λ), as a dashed line. The signal from the 700-nm wide waveguide is weak with a poor signal-to-noise ratio (red curve) and follows the energy-shifted pump spectrum, consistent with non-phase-matched THG. Meanwhile, the 900-nm wide waveguides generate strong, narrow-bandwidth signal offset from the central energy-shifted pump wavelength. From simulation, we infer that the differences between the two 900-nm wide signals (red and blue) are likely due to a 2% fabrication variation.
Fig. 4
Fig. 4 Calculated effective index versus wavelength for several signal-modes (thin lines, bottom labels) around 525 nm for 700- and 900-nm wide waveguides. In addition, we show the energy-shifted pump-mode (thick lines, top labels). Dashed lines denote modes with numerically-zero pump-signal overlap, and the grayed-area shows the ESP bandwidth. A PMW appears as a crossing between the pump and signal lines in this plot. The 700-nm wide waveguide has a PMW with non-zero overlap far outside of the ESP-spectrum while the 900-nm wide waveguide displays a PMW with non-zero overlap slightly red-shifted from the ESP-spectrum.
Fig. 5
Fig. 5 Visible spectra as a function of pump wavelength for a 280-nm wide waveguide. For each pump wavelength, we show the corresponding visible spectrum vertically as an intensity plot, and we mark the peak wavelength with a yellow circle. For reference, the energy-conservation line (λs = λp/3, energy-shifted pump line) is shown as a solid line. Between 1440 and 1490 nm, the signal is weak and follows the energy-shifted pump line. Around 1520 nm, the visible signal around 509 nm is much stronger and varies little with pump wavelength, signifying phase-matched third-harmonic generation.

Metrics