Abstract

Laser-induced breakdown spectroscopy (LIBS) with partial least squares regression (PLSR) has been applied to measuring the acidity of iron ore, which can be defined by the concentrations of oxides: CaO, MgO, Al2O3, and SiO2. With the conventional internal standard calibration, it is difficult to establish the calibration curves of CaO, MgO, Al2O3, and SiO2 in iron ore due to the serious matrix effects. PLSR is effective to address this problem due to its excellent performance in compensating the matrix effects. In this work, fifty samples were used to construct the PLSR calibration models for the above-mentioned oxides. These calibration models were validated by the 10-fold cross-validation method with the minimum root-mean-square errors (RMSE). Another ten samples were used as a test set. The acidities were calculated according to the estimated concentrations of CaO, MgO, Al2O3, and SiO2 using the PLSR models. The average relative error (ARE) and RMSE of the acidity achieved 3.65% and 0.0048, respectively, for the test samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy

Xiao Cheng, Xinyan Yang, Zhihao Zhu, Lianbo Guo, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(33) 9144-9149 (2017)

Univariate and multivariate analyses of strontium and vanadium in soil by laser-induced breakdown spectroscopy

Cuiping Lu, Min Wang, Liusan Wang, Haiying Hu, and Rujing Wang
Appl. Opt. 58(27) 7510-7516 (2019)

Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

Chet R. Bhatt, Christian L. Goueguel, Jinesh C. Jain, Harry M. Edenborn, and Dustin L. McIntyre
Appl. Opt. 56(28) 7789-7795 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
    [Crossref]
  2. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  3. S. Musazzi and U. Perini, Laser-induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014).
  4. R. Noll, Laser-induced Breakdown Spectroscopy (Springer, 2012).
  5. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
    [Crossref] [PubMed]
  6. V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
    [Crossref] [PubMed]
  7. K. J. Grant, G. L. Paul, and J. A. O’Neill, “Quantitative elemental analysis of iron ore by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 45(4), 701–705 (1991).
    [Crossref]
  8. Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
    [Crossref]
  9. L. Barrette and S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta, B At. Spectrosc. 56(6), 715–723 (2001).
    [Crossref]
  10. J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
    [Crossref]
  11. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
    [Crossref]
  12. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
    [Crossref]
  13. M. Kraushaar, R. Noll, and H. U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. 57(10), 1282–1287 (2003).
    [Crossref] [PubMed]
  14. V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
    [Crossref]
  15. P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis,” Appl. Spectrosc. 64(12), 1335–1341 (2010).
    [Crossref] [PubMed]
  16. P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
    [Crossref]
  17. Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
    [Crossref]
  18. R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical plant (John Wiley & Sons, 2003).
  19. R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
    [Crossref]
  20. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
    [Crossref]
  21. S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
    [Crossref]

2014 (2)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

2013 (3)

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

2012 (1)

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
[Crossref]

2010 (2)

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis,” Appl. Spectrosc. 64(12), 1335–1341 (2010).
[Crossref] [PubMed]

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

2009 (3)

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
[Crossref]

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

2008 (2)

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
[Crossref]

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

2003 (1)

2001 (1)

L. Barrette and S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta, B At. Spectrosc. 56(6), 715–723 (2001).
[Crossref]

2000 (2)

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

1991 (1)

Aguilera, J.

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

Aragón, C.

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

Barefield, J. E.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

Barrette, L.

L. Barrette and S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta, B At. Spectrosc. 56(6), 715–723 (2001).
[Crossref]

Brereton, R. G.

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

Chen, K.

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Clegg, S. M.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

Cong, Z. B.

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Cunningham, A. P.

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
[Crossref]

de Kanter, M.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Death, D. L.

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
[Crossref]

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis,” Appl. Spectrosc. 64(12), 1335–1341 (2010).
[Crossref] [PubMed]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
[Crossref]

Ding, H. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Dong, M. R.

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Dyar, M. D.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

Fischer, D.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Fleige, R.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

Gao, M.

Grant, K. J.

Guo, L. B.

Hao, Z. Q.

He, X. N.

Hou, Z. Y.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Hubmer, G.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Kraushaar, M.

Leitner, R.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Li, J.

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Li, J. Y.

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Li, X. Y.

Li, Y.

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Lu, J. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Lu, Y. F.

Luo, J. H.

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Madurga, V.

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

Manrique, J.

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

Noll, R.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

M. Kraushaar, R. Noll, and H. U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. 57(10), 1282–1287 (2003).
[Crossref] [PubMed]

O’Neill, J. A.

Paul, G. L.

Pilz, K.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Pollard, L. J.

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
[Crossref]

Qi, L. F.

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Qiu, K. H.

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Qiu, Y. C.

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Reuter, T.

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

Schmitz, H. U.

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

M. Kraushaar, R. Noll, and H. U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. 57(10), 1282–1287 (2003).
[Crossref] [PubMed]

Shen, M.

Sklute, E.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

Smith, B.

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

Spencer, S. J.

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
[Crossref]

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis,” Appl. Spectrosc. 64(12), 1335–1341 (2010).
[Crossref] [PubMed]

Sturm, V.

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

Sun, L. X.

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Sun, Q.

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

Tran, M.

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

Turmel, S.

L. Barrette and S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta, B At. Spectrosc. 56(6), 715–723 (2001).
[Crossref]

Wang, Z.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Wiens, R. C.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

Winefordner, J.

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

Xie, Z. Q.

Xin, Y.

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Xiong, W.

Yao, S. C.

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

Yaroshchyk, P.

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
[Crossref]

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis,” Appl. Spectrosc. 64(12), 1335–1341 (2010).
[Crossref] [PubMed]

Yuan, T. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zeng, X. Y.

Zhang, P. C.

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Zhou, W. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Adv. Mater. Res. (1)

J. H. Luo, K. H. Qiu, Y. C. Qiu, and P. C. Zhang, “Studies of mineralogical characteristics on vanadium titanium magnetite in Hongge area, Panzhihua, Sichuan, China,” Adv. Mater. Res. 813, 292–297 (2013).
[Crossref]

Anal. Chem. (1)

V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, and R. Noll, “Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works,” Anal. Chem. 86(19), 9687–9692 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

Q. Sun, M. Tran, B. Smith, and J. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413(1), 187–195 (2000).
[Crossref]

Analyst (Lond.) (1)

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst (Lond.) 125(11), 2125–2154 (2000).
[Crossref]

Appl. Spectrosc. (3)

Front. Phys. (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

J. Anal. At. Spectrom. (2)

P. Yaroshchyk, D. L. Death, and S. J. Spencer, “Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS,” J. Anal. At. Spectrom. 27(1), 92–98 (2012).
[Crossref]

S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, “Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression,” J. Anal. At. Spectrom. 25(11), 1733 (2010).
[Crossref]

J. Comput. Commun. (1)

Z. B. Cong, L. X. Sun, Y. Xin, Y. Li, and L. F. Qi, “Comparison of calibration curve method and partial least square method in the laser induced breakdown spectroscopy quantitative analysis,” J. Comput. Commun. 1(7), 14–18 (2013).
[Crossref]

Opt. Express (1)

Spectrochim. Acta, B At. Spectrosc. (6)

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta, B At. Spectrosc. 64(1), 79–88 (2009).
[Crossref]

V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, and R. Noll, “Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1167–1170 (2008).
[Crossref]

L. Barrette and S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta, B At. Spectrosc. 56(6), 715–723 (2001).
[Crossref]

J. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(10), 993–998 (2009).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by Laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta, B At. Spectrosc. 63(7), 763–769 (2008).
[Crossref]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta, B At. Spectrosc. 64(10), 1048–1058 (2009).
[Crossref]

Other (3)

S. Musazzi and U. Perini, Laser-induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014).

R. Noll, Laser-induced Breakdown Spectroscopy (Springer, 2012).

R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical plant (John Wiley & Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 The root-mean-square error of cross-validation (RMSECV) vs. number of principal components for CaO, MgO, Al2O3, and SiO2.
Fig. 3
Fig. 3 The internal standard calibration curves for the oxides: (a) CaO, (b) MgO, (c) Al2O3, and (d) SiO2.
Fig. 4
Fig. 4 Correlation curves of predicted concentrations by PLSR calibration models and certified concentrations for oxides: (a) CaO, (b) MgO, (c) Al2O3, and (d) SiO2. (Triangle – 50 training data, square – 10 test data).
Fig. 5
Fig. 5 Correlation curve of certified and predicted acidities of the test samples.

Tables (1)

Tables Icon

Table 1 The reference concentrations of standard iron ore samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y n = X nm b m +e,
Acidity= C CaO + C MgO C A l 2 O 3 + C Si O 2 ,

Metrics