Abstract

We fabricated GaInAsP/InP waveguide-integrated lateral-current-injection (LCI) membrane distributed feedback (DFB) lasers on a Si substrate by using benzocyclobutene (BCB) adhesive bonding for on-chip optical interconnection. The integration ofa butt-jointed built-in (BJB) GaInAsP passive waveguide was performed by organometallic vapor-phase epitaxy (OMVPE).By introducing a strongly index-coupled DFB structure with a 50-µm-long cavity, a threshold current of 230 µA was achieved for a stripe width of 0.8 µm under room-temperature continuous-wave (RT-CW) conditions. The maximum output power of 32 µW was obtained. The lasing wavelength and submode suppression ratio (SMSR) were 1534 nm and 28 dB, respectively, at a bias current of 1.2 mA.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating

Takahiko Shindo, Tadashi Okumura, Hitomi Ito, Takayuki Koguchi, Daisuke Takahashi, Yuki Atsumi, Joonhyun Kang, Ryo Osabe, Tomohiro Amemiya, Nobuhiko Nishiyama, and Shigehisa Arai
Opt. Express 19(3) 1884-1891 (2011)

Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits

Tadashi Okumura, Munetaka Kurokawa, Mizuki Shirao, Daisuke Kondo, Hitomi Ito, Nobuhiko Nishiyama, Takeo Maruyama, and Shigehisa Arai
Opt. Express 17(15) 12564-12570 (2009)

GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate

Takeo Maruyama, Tadashi Okumura, Shinichi Sakamoto, Koji Miura, Yoshifumi Nishimoto, and Shigehisa Arai
Opt. Express 14(18) 8184-8188 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
  2. P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
    [Crossref]
  3. P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
    [Crossref]
  4. D. A. B. Miller, “Device requirements foroptical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. W. Hofmann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf, D. Bimberg, M. C. Amann, and C. Chang-Hasnain, “22-Gb/s long wavelength VCSELs,” Opt. Express 17(20), 17547–17554 (2009).
    [Crossref] [PubMed]
  6. S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
    [Crossref]
  7. P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
    [Crossref]
  8. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
    [Crossref] [PubMed]
  9. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
    [Crossref] [PubMed]
  10. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [Crossref]
  11. T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
    [Crossref]
  12. C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
    [Crossref]
  13. S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
    [Crossref]
  14. T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
    [Crossref]
  15. T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
    [Crossref]
  16. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
    [Crossref]
  17. S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
    [Crossref]
  18. K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
    [Crossref]
  19. T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
    [Crossref] [PubMed]
  20. T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
    [Crossref]
  21. T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
    [Crossref] [PubMed]
  22. D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
    [Crossref]
  23. Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
    [Crossref]
  24. D. Inoue, J. Lee, T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Butt-joint built-in (BJB) structure for membrane photonic integration,” The 25th International Conference on Indium Phosphide and RelatedMaterials (IPRM 2013), Kobe, Japan, TuD3–6,May (2013).
    [Crossref]
  25. K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
    [Crossref]
  26. K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
    [Crossref]
  27. T. Hiratani, K. Doi, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Low-power and high-speed operation capabillities of semiconductor membrane lasers – energy cost limited by joule heat,” The 26th International Conference on Indium Phosphide and Related Materials (IPRM 2014), Montpellier, France, P29, May (2014).
    [Crossref]
  28. J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
    [Crossref]

2014 (2)

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

2013 (3)

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

2012 (2)

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

2011 (4)

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

2010 (1)

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

2009 (3)

2007 (1)

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

2005 (1)

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

2003 (2)

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

2002 (2)

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[Crossref]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

2001 (1)

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

1994 (1)

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[Crossref]

1992 (1)

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

1981 (1)

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

1965 (1)

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

Abe, Y.

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

Amann, M. C.

Amemiya, T.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

Arai, S.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[Crossref] [PubMed]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

Atsuji, Y.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

Atsumi, Y.

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

Bimberg, D.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

W. Hofmann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf, D. Bimberg, M. C. Amann, and C. Chang-Hasnain, “22-Gb/s long wavelength VCSELs,” Opt. Express 17(20), 17547–17554 (2009).
[Crossref] [PubMed]

Böhm, G.

Bonkohara, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Caneau, C.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[Crossref]

Chandra, G.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

Chang, C.-C.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Chang-Hasnain, C.

Chen, C.-H.

Chen, C.-T.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Chiu, C.-Y.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Doi, K.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

Futami, M.

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

Hasebe, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

Hiraiwa, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Hiramatsu, S.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Hiratani, T.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

Hiruma, K.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Hofmann, W.

Hsiao, H.-L.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Imai, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Inoue, D.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

Ishikawa, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Ishitsuka, T.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Ito, H.

Iwai, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kakitsuka, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

Kamiya, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kang, J.

Kapur, P.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[Crossref]

Kasukawa, A.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kawaguchi, Y.

Kawakita, Y.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kinoshita, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Kishino, K.

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Koguchi, T.

Komori, K.

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

Kondo, D.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[Crossref] [PubMed]

Kudo, K.

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

Kurokawa, M.

Lan, H.-C.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lee, J.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

Lee, Y.-C.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lin, S.-S.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lin, Y.-C.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lott, J. A.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

Maeda, Y.

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

Maruyama, T.

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[Crossref] [PubMed]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Matsuo, S.

McVittie, J. P.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[Crossref]

Meltzer, C.

Mikawa, T.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements foroptical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moore, G. E.

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

Moser, P.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

Müller, M.

Murayama, T.

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

Mutig, A.

Nadtochiy, A.

Naitoh, H.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Nishimoto, Y.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Nishiyama, N.

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[Crossref] [PubMed]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Noguchi, Y.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[Crossref]

Notomi, M.

Nozaki, K.

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

Oe, K.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[Crossref]

Ohira, K.

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

Ohtake, M.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Okabe, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

Okumura, T.

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[Crossref] [PubMed]

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

Osabe, R.

Rosskopf, J.

Sakamoto, S.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

Saraswat, K. C.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[Crossref]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

Sato, T.

Shen, P.-K.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Shim, J.

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

Shimizu, H.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Shindo, T.

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[Crossref] [PubMed]

Shinya, A.

Shirao, M.

Suematsu, Y.

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

Suzuki, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Takagi, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Takahashi, D.

Takaki, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Takeda, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[Crossref] [PubMed]

Takino, Y.

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

Tamura, S.

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

Taniyama, H.

Tsukiji, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Wu, M.-L.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Yamazaki, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

Yoshida, J.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Zeng, M.-Y.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Zhu, T.-Z.

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Appl. Phys. Express (1)

D. Inoue, J. Lee, K. Doi, T. Hiratani, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of GaInAsP/InP lateral-current-injection membrane laser bonded on Si substrate,” Appl. Phys. Express 7(7), 072701 (2014).
[Crossref]

Electron. Lett. (2)

Y. Abe, K. Kishino, Y. Suematsu, and S. Arai, “GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide,” Electron. Lett. 17(25), 945–947 (1981).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[Crossref]

Electronics (1)

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

IEEE J. Sel. Top. Quantum Electron. (7)

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 452–459 (2003).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[Crossref]

S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1381–1389 (2011).
[Crossref]

T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, “Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502009 (2013).
[Crossref]

K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005).
[Crossref]

IEEE Photon. J. (1)

C.-T. Chen, P.-K. Shen, T.-Z. Zhu, C.-C. Chang, S.-S. Lin, M.-Y. Zeng, C.-Y. Chiu, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-C. Lin, and M.-L. Wu, “Chip-level 1 × 2 opticalinterconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[Crossref]

K. Kudo, J. Shim, K. Komori, and S. Arai, “Reduction of effective linewidth enhancement factor αeff of DFB lasers with complex coupling coefficients,” IEEE Photon. Technol. Lett. 4(6), 531–534 (1992).
[Crossref]

IEEE Trans. Electron. Dev. (2)

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[Crossref]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[Crossref]

J. Lee, Y. Maeda, Y. Atsumi, Y. Takino, N. Nishiyama, and S. Arai, “Low-loss GaInAsP wire waveguide on Si substrate with benzocyclobutene adhesive wafer bonding for membrane photonic circuits,” Jpn. J. Appl. Phys. 51(4), 042201 (2012).
[Crossref]

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(44R), 040205 (2010).
[Crossref]

Nat. Photonics (1)

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Opt. Express (5)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements foroptical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (2)

D. Inoue, J. Lee, T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, and S. Arai, “Butt-joint built-in (BJB) structure for membrane photonic integration,” The 25th International Conference on Indium Phosphide and RelatedMaterials (IPRM 2013), Kobe, Japan, TuD3–6,May (2013).
[Crossref]

T. Hiratani, K. Doi, Y. Atsuji, T. Amemiya, N. Nishiyama, and S. Arai, “Low-power and high-speed operation capabillities of semiconductor membrane lasers – energy cost limited by joule heat,” The 26th International Conference on Indium Phosphide and Related Materials (IPRM 2014), Montpellier, France, P29, May (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Initial wafer structure.
Fig. 2
Fig. 2 Fabrication process of a waveguide-integrated LCI-membrane DFB laser.
Fig. 3
Fig. 3 (a) SEM image of the top view of the fabricated waveguide-integrated LCI-membrane DFB laser. (b) Schematic diagram of the cross section parallel to the stripe at the coupling section. (c) SEM image of the cross section parallel to the stripe observed at the coupling section. (d) SEM image of the cross section perpendicular to the stripe observed at the passive waveguide section.
Fig. 4
Fig. 4 (a) SEM image of the surface grating observed at the InP side cladding region beside the active-region stripe. (b) Calculated surface-grating structure approximated by a square shape.
Fig. 5
Fig. 5 (a) Light-output and voltage–current characteristics of a waveguide-integrated LCI- membrane DFB laser. (b) Light-output characteristics for various operating temperatures under CW condition.
Fig. 6
Fig. 6 Lasing spectrum for a device with a cavity length of 50 µm and a stripe width of 0.8 µm. The red and blue lines indicate the measured spectrum at a bias current of 1.2 mA and the calculated spectrum with a refractive-index coupling coefficient of 1800 cm−1, respectively.

Metrics