Abstract

The use of the Type I and Type II scheme, first introduced and used by fiber Bragg grating researchers, has recently been adopted by the ultrafast laser direct-write photonics community to classify the physical geometry of waveguides written into glasses and crystals. This has created confusion between the fiber Bragg grating and direct-write photonics community. Here we propose a return to the original basis of the classification based on the characteristics of the material modification rather than the physical geometry of the waveguide.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparative study between the standard type I and the type A femtosecond laser induced refractive index change in silver containing glasses

Alain Abou Khalil, Jean-Philippe Bérubé, Sylvain Danto, Thierry Cardinal, Yannick Petit, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 9(6) 2640-2651 (2019)

Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask

Christopher W. Smelser, Stephen J. Mihailov, and Dan Grobnic
Opt. Express 13(14) 5377-5386 (2005)

Low loss Type II regenerative Bragg gratings made with ultrafast radiation

Dan Grobnic, Cyril Hnatovsky, and Stephen J. Mihailov
Opt. Express 24(25) 28704-28712 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [Crossref]
  2. P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
    [Crossref]
  3. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  4. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  5. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  6. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  7. T. Calmano and S. Muller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
  8. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
    [Crossref] [PubMed]
  9. L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [Crossref]
  10. C.-H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics (2007), p. ME2.
  11. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
    [Crossref]
  12. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  13. A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
    [Crossref]
  14. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
    [Crossref]
  15. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
    [Crossref] [PubMed]
  16. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26(7), 1370–1378 (2009).
    [Crossref]
  17. J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
    [Crossref]
  18. K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian, “Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass,” Opt. Mater. Express 3(1), 67–85 (2013).
    [Crossref]
  19. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
    [Crossref]
  20. Y. Shimotsuma, M. Sakakura, and K. Miura, “Manipulation of optical anisotropy in silica glass [Invited],” Opt. Mater. Express 1(5), 803–815 (2011).

2015 (1)

T. Calmano and S. Muller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

2014 (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (3)

2011 (2)

Y. Shimotsuma, M. Sakakura, and K. Miura, “Manipulation of optical anisotropy in silica glass [Invited],” Opt. Mater. Express 1(5), 803–815 (2011).

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

2009 (2)

M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26(7), 1370–1378 (2009).
[Crossref]

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

2008 (3)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

2006 (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

1994 (1)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

1993 (1)

J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Alberich, M.

Archambault, J. L.

J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Arriola, A.

Audouard, E.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Bayon, J. F.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Bernage, P.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Boukenter, A.

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Bulgakova, N.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Burakov, I.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Calmano, T.

T. Calmano and S. Muller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Chen, F.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, W.-J.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Dong, L.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Douay, M.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Dubs, C.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Eaton, S. M.

Ferrer, A.

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Fu, L.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Fuerbach, A.

Georges, T.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Gross, S.

Heinrich, M.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Herman, P. R.

Hertel, I.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Hewak, D. W.

Hilbert, V.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Ho, S.

Hughes, M. A.

Husakou, A.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Khrushchev, I.

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Legoubin, S.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Li, J.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Mauclair, C.

McKay, H. A.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Mermillod-Blondin, A.

K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian, “Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass,” Opt. Mater. Express 3(1), 67–85 (2013).
[Crossref]

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Meshcheryakov, Y.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Mishchik, K.

Mitchell, J.

Miura, K.

Monerie, M.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Muller, S.

T. Calmano and S. Muller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Ng, M. L.

Niay, P.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Nolte, S.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Okhrimchuk, A. G.

Ouerdane, Y.

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Rademaker, K.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Reekie, L.

J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Riedel, R.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Ringleb, S.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Rosenfeld, A.

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Ruiz de la Cruz, A.

Ruske, J.-P.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Russel, P. St. J.

J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Sakakura, M.

Shestakov, A. V.

Shimotsuma, Y.

Solis, J.

Stoian, R.

K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian, “Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass,” Opt. Mater. Express 3(1), 67–85 (2013).
[Crossref]

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Thomas, J. U.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Tünnermann, A.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Winful, H. G.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Withford, M. J.

Wu, T.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Xie, W. X.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

Yang, W.

Zeil, P.

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Zhang, H.

Appl. Phys. Lett. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Electron. Lett. (1)

J. L. Archambault, L. Reekie, and P. St. J. Russel, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Calmano and S. Muller, “Crystalline Waveguide Lasers in the Visible and Near-Infrared Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Laser Photonics Rev. (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Opt. Commun. (2)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in Germania doped fibres: writing and erasing experiments using pulsed or cw UV exposure,” Opt. Commun. 113(1–3), 176–192 (1994).
[Crossref]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B (1)

A. Mermillod-Blondin, I. Burakov, Y. Meshcheryakov, N. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[Crossref]

Phys. Status Solidi (1)

J. U. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi 208(2), 276–283 (2011).
[Crossref]

Other (1)

C.-H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics (2007), p. ME2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 End-on microscope images of various waveguide geometries. The inscription laser was incident from the top in all images. The scale bars correspond to 10 µm. (a) Waveguide from a type I modification in boro-aluminosilicate glass exhibiting regions of positive as well as negative index change. (b) Stress-based double-line waveguide from type II modifications in titanium doped sapphire. (c) Depressed cladding waveguide in ZBLAN glass based on smooth type I modifications. (d) White light guiding in a microstructured waveguide in ZBLAN using type I modifications of negative index contrast. (d) ARROW waveguide under white light illumination in boro-aluminosilicate glass based on positive index contrast type I modifications.

Metrics