Abstract

An optical wireless location (OWL) system is introduced for indoor positioning. The OWL system makes use of a mobile photoreceiver that facilitates triangulation by measuring angle-of-arrival (AOA) bearings from LEDs in an optical beacon grid. The photoreceiver has three photodiodes (PDs), arranged in a corner-cube, to facilitate differential photocurrent sensing of the incident light AOA, by way of azimuthal ϕand polar θ angles. The AOA error for indoor positioning is characterized empirically. Optical AOA positioning is shown to have a fundamental advantage over known optical received signal strength (RSS) positioning, as AOA estimation is insensitive to power and alignment imbalances of the optical beacon grid. The OWL system is built, and a performance comparison is carried out between optical AOA and RSS positioning. It is shown that optical AOA positioning can achieve a mean 3-D positioning error of only 5 cm. Experimental design and future prospects of optical AOA positioning are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible light communication and positioning using positioning cells and machine learning algorithms

Yu-Cheng Chuang, Zhi-Qing Li, Chin-Wei Hsu, Yang Liu, and Chi-Wai Chow
Opt. Express 27(11) 16377-16383 (2019)

Omnidirectional beacon-localization using a catadioptric system

Thomas C. Shen, Robert J. Drost, Brian M. Sadler, John R. Rzasa, and Christopher C. Davis
Opt. Express 24(7) 6931-6944 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Kurth, G. Kantor, and S. Singh, “Experimental results in range-only localization with radio,” in Proceedingsof IEEE International Conference on Intelligent Robots and Systems,(Las Vegas, 2003), pp. 974–979.
    [Crossref]
  2. B. Tang and D. E. Dodds, “Synchronization of weak indoor GPS signals with doppler using a segmented matched filter and accumulation,” in Proceedingsof IEEE Canadian Conference on Electrical and Computer Engineering,(Vancouver, 2007), pp. 1531–1534.
    [Crossref]
  3. J. Wu, J. Gao, M. Li, and Y. Wang, “Wavelet transform for GPS carrier phase multipath mitigation,” in Proceedingsof first International Conference on Information Science and Engineering,(Nanjing, 2009), pp. 1019–1022.
    [Crossref]
  4. J. Kemper and H. Linde, “Challenges in passive infra-red indoor localization,” in Proceedingsof fifth Workshop on Positioning, Navigation and Communication,(Hannover, 2008), pp. 63–70.
  5. S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
    [Crossref]
  6. U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
    [Crossref]
  7. K. Panta and J. Armstrong, “Indoor localization using white LEDs,” IET Trans. Electron. Lett. 48(4), 228–230 (2012).
    [Crossref]
  8. A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.
  9. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor optical wireless localization system with height estimation for high speed wireless communications in personal areas,” in Proceedings of International Topic Meeting on Microwave Photonics, (Noordwijk, 2012), pp. 72–75.
    [Crossref]
  10. A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning with a differential photosensor,” IEEE Photon. Technol. Lett. 24(12), 1027–1029 (2012).
    [Crossref]
  11. A. Arafa, R. Klukas, J. F. Holzman, and X. Jin, “Towards a practical indoor lighting positioning system,” in Proceedings of Institute of Navigation Global Navigation Satellite System, (Nashville, 2012), pp. 1020–1023.
  12. A. Arafa, X. Jin, D. Guerrero, R. Klukas, and J. F. Holzman, “Imaging sensors for optical wireless location technology,” in Proceedings of Institute of Navigation Global Navigation Satellite System,(Nashville, 2013), pp. 556–559.
  13. J. Quan, B. Bai, S. Jin, and Y. Zhang, “Indoor positioning modeling by visible light communication and imaging,” Chin. Opt. Lett. 12(5), 052201 (2014).
    [Crossref]
  14. P. Bahl and V. N. Padmanabhan, “Radar: an in-building RF-based user location and tracking system,” in Proceedings of IEEE INFOCOM, (Tel Aviv, 2000), pp. 775–784.
  15. H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
    [Crossref]
  16. J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Comp. 34(8), 57–66 (2001).
    [Crossref]
  17. B. Cook, G. Buckberry, I. Scowcroft, J. Mitchell, and T. Allen, “Indoor location using trilateration characteristics,” in Proceedings of London Communication Symposium, (Indian Wells, 2005), pp. 147–150.
  18. A. D. Cheok and L. Yue, “A novel light sensor based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
    [Crossref]
  19. S. Harnilovic, Wireless Optical Communication Systems (Springer, New York, 2004).
  20. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed indoor optical wireless communication system with single channel imaging receiver,” Opt. Express 20(8), 8442–8456 (2012).
    [Crossref] [PubMed]
  21. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
    [Crossref] [PubMed]
  22. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  23. G. Retscher and Q. Fin, “Continuous indoor navigation with RFID and INS,” in Proceedingsof IEEE Position Location and Navigation Symposium, (Indian Wells, 2010), pp. 102–112.
  24. U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
    [Crossref]
  25. X. Jin and J. F. Holzman, “Differential retro-detection for remote sensing applications,” IEEE Sensors. J. Electron. 10(12), 1875–1883 (2010).
    [Crossref]
  26. B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
    [Crossref]
  27. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, 1993).
  28. A. G. Dempster, “Dilution of precision in angle of arrival positioning systems,” IET Trans. Electron. Lett. 42(5), 291–292 (2006).
    [Crossref]
  29. T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]

2015 (1)

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

2014 (2)

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

J. Quan, B. Bai, S. Jin, and Y. Zhang, “Indoor positioning modeling by visible light communication and imaging,” Chin. Opt. Lett. 12(5), 052201 (2014).
[Crossref]

2012 (4)

2011 (3)

S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
[Crossref]

A. D. Cheok and L. Yue, “A novel light sensor based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
[Crossref]

2010 (2)

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

X. Jin and J. F. Holzman, “Differential retro-detection for remote sensing applications,” IEEE Sensors. J. Electron. 10(12), 1875–1883 (2010).
[Crossref]

2006 (1)

A. G. Dempster, “Dilution of precision in angle of arrival positioning systems,” IET Trans. Electron. Lett. 42(5), 291–292 (2006).
[Crossref]

2004 (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

2001 (1)

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Comp. 34(8), 57–66 (2001).
[Crossref]

Arafa, A.

A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning with a differential photosensor,” IEEE Photon. Technol. Lett. 24(12), 1027–1029 (2012).
[Crossref]

Armstrong, J.

K. Panta and J. Armstrong, “Indoor localization using white LEDs,” IET Trans. Electron. Lett. 48(4), 228–230 (2012).
[Crossref]

Bai, B.

Borriello, G.

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Comp. 34(8), 57–66 (2001).
[Crossref]

Chen, J.

Chen, W.

Cheok, A. D.

A. D. Cheok and L. Yue, “A novel light sensor based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

Dempster, A. G.

A. G. Dempster, “Dilution of precision in angle of arrival positioning systems,” IET Trans. Electron. Lett. 42(5), 291–292 (2006).
[Crossref]

Dodds, D. E.

B. Tang and D. E. Dodds, “Synchronization of weak indoor GPS signals with doppler using a segmented matched filter and accumulation,” in Proceedingsof IEEE Canadian Conference on Electrical and Computer Engineering,(Vancouver, 2007), pp. 1531–1534.
[Crossref]

Efron, B.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

Gezici, S.

H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
[Crossref]

Hann, S.

S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
[Crossref]

Hassan, N. U.

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

Hastie, T.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

Hightower, J.

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Comp. 34(8), 57–66 (2001).
[Crossref]

Hirose, M.

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

Hirota, K.

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

Hiyama, A.

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

Holzman, J. F.

X. Jin and J. F. Holzman, “Differential retro-detection for remote sensing applications,” IEEE Sensors. J. Electron. 10(12), 1875–1883 (2010).
[Crossref]

Jin, S.

Jin, X.

A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning with a differential photosensor,” IEEE Photon. Technol. Lett. 24(12), 1027–1029 (2012).
[Crossref]

X. Jin and J. F. Holzman, “Differential retro-detection for remote sensing applications,” IEEE Sensors. J. Electron. 10(12), 1875–1883 (2010).
[Crossref]

Johnstone, I.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

Jung, S. Y.

S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
[Crossref]

Kantor, G.

D. Kurth, G. Kantor, and S. Singh, “Experimental results in range-only localization with radio,” in Proceedingsof IEEE International Conference on Intelligent Robots and Systems,(Las Vegas, 2003), pp. 974–979.
[Crossref]

Klukas, R.

A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning with a differential photosensor,” IEEE Photon. Technol. Lett. 24(12), 1027–1029 (2012).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kurth, D.

D. Kurth, G. Kantor, and S. Singh, “Experimental results in range-only localization with radio,” in Proceedingsof IEEE International Conference on Intelligent Robots and Systems,(Las Vegas, 2003), pp. 974–979.
[Crossref]

Kuzuoka, H.

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

Lim, C.

Nadeem, U.

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Nirmalathas, A.

Panta, K.

K. Panta and J. Armstrong, “Indoor localization using white LEDs,” IET Trans. Electron. Lett. 48(4), 228–230 (2012).
[Crossref]

Park, C. S.

S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
[Crossref]

Pasha, M. A.

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

Poor, H. V.

H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
[Crossref]

Quan, J.

Singh, S.

D. Kurth, G. Kantor, and S. Singh, “Experimental results in range-only localization with radio,” in Proceedingsof IEEE International Conference on Intelligent Robots and Systems,(Las Vegas, 2003), pp. 974–979.
[Crossref]

Skafidas, E.

Soganci, H.

H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
[Crossref]

Tang, B.

B. Tang and D. E. Dodds, “Synchronization of weak indoor GPS signals with doppler using a segmented matched filter and accumulation,” in Proceedingsof IEEE Canadian Conference on Electrical and Computer Engineering,(Vancouver, 2007), pp. 1531–1534.
[Crossref]

Tibshitani, R.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

Wang, K.

Wang, Z.

Yamashita, J.

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

Yu, C.

Yue, L.

A. D. Cheok and L. Yue, “A novel light sensor based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

Yuen, C.

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

Zhang, Y.

Zhong, W.-D.

Ann. Stat. (1)

B. Efron, T. Hastie, I. Johnstone, and R. Tibshitani, “Least angle regression,” Ann. Stat. 32(2), 407–499 (2004).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Comp. (1)

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Comp. 34(8), 57–66 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning with a differential photosensor,” IEEE Photon. Technol. Lett. 24(12), 1027–1029 (2012).
[Crossref]

IEEE Sensors. J. Electron. (1)

X. Jin and J. F. Holzman, “Differential retro-detection for remote sensing applications,” IEEE Sensors. J. Electron. 10(12), 1875–1883 (2010).
[Crossref]

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

S. Y. Jung, S. Hann, and C. S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron. 57(4), 1592–1597 (2011).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

A. D. Cheok and L. Yue, “A novel light sensor based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

IEEE Trans. Wirel. Comm. (1)

H. Soganci, S. Gezici, and H. V. Poor, “Accurate positioning in ultrawideband systems,” IEEE Trans. Wirel. Comm. 18(2), 19–27 (2011).
[Crossref]

IET Trans. Electron. Lett. (4)

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols,” IET Trans. Electron. Lett. 51(1), 72–74 (2015).
[Crossref]

A. G. Dempster, “Dilution of precision in angle of arrival positioning systems,” IET Trans. Electron. Lett. 42(5), 291–292 (2006).
[Crossref]

U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, “Highly accurate 3D wireless indoor positioning system using white LED lights,” IET Trans. Electron. Lett. 50(11), 828–830 (2014).
[Crossref]

K. Panta and J. Armstrong, “Indoor localization using white LEDs,” IET Trans. Electron. Lett. 48(4), 228–230 (2012).
[Crossref]

Opt. Express (3)

Other (13)

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, 1993).

A. Hiyama, J. Yamashita, H. Kuzuoka, K. Hirota, and M. Hirose, “Position tracking using infra-red signals for museam guiding system,” in Proceedingsof Second International Conference on Ubiquitous Computing Systems,(Tokyo, 2004), pp. 49–61.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor optical wireless localization system with height estimation for high speed wireless communications in personal areas,” in Proceedings of International Topic Meeting on Microwave Photonics, (Noordwijk, 2012), pp. 72–75.
[Crossref]

D. Kurth, G. Kantor, and S. Singh, “Experimental results in range-only localization with radio,” in Proceedingsof IEEE International Conference on Intelligent Robots and Systems,(Las Vegas, 2003), pp. 974–979.
[Crossref]

B. Tang and D. E. Dodds, “Synchronization of weak indoor GPS signals with doppler using a segmented matched filter and accumulation,” in Proceedingsof IEEE Canadian Conference on Electrical and Computer Engineering,(Vancouver, 2007), pp. 1531–1534.
[Crossref]

J. Wu, J. Gao, M. Li, and Y. Wang, “Wavelet transform for GPS carrier phase multipath mitigation,” in Proceedingsof first International Conference on Information Science and Engineering,(Nanjing, 2009), pp. 1019–1022.
[Crossref]

J. Kemper and H. Linde, “Challenges in passive infra-red indoor localization,” in Proceedingsof fifth Workshop on Positioning, Navigation and Communication,(Hannover, 2008), pp. 63–70.

S. Harnilovic, Wireless Optical Communication Systems (Springer, New York, 2004).

G. Retscher and Q. Fin, “Continuous indoor navigation with RFID and INS,” in Proceedingsof IEEE Position Location and Navigation Symposium, (Indian Wells, 2010), pp. 102–112.

B. Cook, G. Buckberry, I. Scowcroft, J. Mitchell, and T. Allen, “Indoor location using trilateration characteristics,” in Proceedings of London Communication Symposium, (Indian Wells, 2005), pp. 147–150.

A. Arafa, R. Klukas, J. F. Holzman, and X. Jin, “Towards a practical indoor lighting positioning system,” in Proceedings of Institute of Navigation Global Navigation Satellite System, (Nashville, 2012), pp. 1020–1023.

A. Arafa, X. Jin, D. Guerrero, R. Klukas, and J. F. Holzman, “Imaging sensors for optical wireless location technology,” in Proceedings of Institute of Navigation Global Navigation Satellite System,(Nashville, 2013), pp. 556–559.

P. Bahl and V. N. Padmanabhan, “Radar: an in-building RF-based user location and tracking system,” in Proceedings of IEEE INFOCOM, (Tel Aviv, 2000), pp. 775–784.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of the optical AOA positioning system with a photoreceiver establishing position estimates by way of triangulation off an optical beacon grid.
Fig. 2
Fig. 2 Analytical results are shown for normalized differential photocurrents Δi1(ϕ,θ) and Δi2(ϕ,θ) versus azimuthal ϕ and polar θ angles.
Fig. 3
Fig. 3 Experimental results are shown for the photoreceiver AOA estimation by way of (a) a direct intensity characterization of measured azimuthal ϕ and polar θ angles versus incident optical intensity and (b) a reflected intensity characterization of measured azimuthal ϕ and polar θ angles vs. reflective surface distance for plywood, stainless steel, and drywall surfaces.
Fig. 4
Fig. 4 Measured angle errors (a) Δϕ and (b) Δθseen as absolute quantities vs.ϕ and θ.
Fig. 5
Fig. 5 The 3-D positioning error standard deviation, σp, is shown for optical AOA positioning with (a) two optical beacons, LEDs A1, A2, and (b) four optical beacons, LEDs B1, B2, B3, B4.
Fig. 6
Fig. 6 The 3-D positioning error is seen for optical (a) RSS and (b) AOA positioning systems.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ i 1 = i 1 (ϕ,θ) i 3 (ϕ,θ) C 0 + C 1 θ+ C 2 ϕ+ C 3 θ 2 + C 4 θϕ+ C 5 ϕ 2 + C 6 θ 3 + C 7 θ 2 ϕ+ C 8 θ ϕ 2 ,
Δ i 2 = i 2 (ϕ,θ) i 3 (ϕ,θ) D 0 + D 1 θ+ D 2 ϕ+ D 3 θ 2 + D 4 θϕ+ D 5 ϕ 2 + D 6 θ 3 + D 7 θ 2 ϕ+ D 8 θ ϕ 2 .
tan ϕ i = x i x y i y ,
tan θ i = ( x i x ) 2 + ( y i y ) 2 z i z .
M= [ Δ ϕ 1 Δ ϕ 2 Δ θ 1 Δ θ 2 ] T ,
P= [ ΔxΔyΔz ] T ,
M=[ Δ ϕ 1 Δ ϕ 2 Δ θ 1 Δ θ 2 ]=[ ϕ 1 x ϕ 1 y ϕ 1 z ϕ 2 x ϕ 2 y ϕ 2 z θ 1 x θ 1 y θ 1 z θ 2 x θ 2 y θ 2 z ][ Δx Δy Δz ]=HP.
P= ( H T H ) 1 H T M.
σ P 2 =tr[ E( P P T ) ]=tr[ ( H T H ) 1 ] σ M 2 ,
PDOP= σ P σ M = σ x 2 + σ y 2 + σ z 2 σ M = tr[ ( H T H ) 1 ] .

Metrics