Abstract

We present a procedure to optimize the performance of all-optical switches based on metal-dielectric nanocomposites. The management of constructive and destructive interference between the third-, fifth- and seventh-order susceptibilities allowed characterization of optimal conditions for ultrafast switching with reduced losses. Proof-of-principle experiments with metal-colloids are reported to validate the method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-order optical nonlinearities in plasmonic nanocomposites—a review

Albert S. Reyna and Cid B. de Araújo
Adv. Opt. Photon. 9(4) 720-774 (2017)

Spatial phase modulation due to quintic and septic nonlinearities in metal colloids

Albert S. Reyna and Cid B. de Araújo
Opt. Express 22(19) 22456-22469 (2014)

Nonlinear polarization instability in cubic-quintic plasmonic nanocomposites

Albert S. Reyna, Emeric Bergmann, Pierre-François Brevet, and Cid B. de Araújo
Opt. Express 25(18) 21049-21067 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
    [Crossref]
  2. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [Crossref] [PubMed]
  3. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  4. H. Ishikawa, Ultrafast All-Optical Signal Processing Devices (Wiley, 2008).
  5. A. V. Kimel, “All-optical switching: three rules of design,” Nat. Mater. 13(3), 225–226 (2014).
    [Crossref] [PubMed]
  6. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  7. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14(20), 1140–1142 (1989).
    [Crossref] [PubMed]
  8. X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
    [Crossref]
  9. Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
    [Crossref]
  10. C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
    [Crossref]
  11. O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda, “Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express 4(1), 92–100 (2014).
    [Crossref]
  12. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
    [Crossref]
  13. J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
    [Crossref]
  14. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
    [Crossref]
  15. E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues., “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
    [Crossref]
  16. E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
    [PubMed]
  17. L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2136–2140 (2007).
    [Crossref]
  18. L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
    [Crossref]
  19. Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
    [Crossref]
  20. R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
    [Crossref]
  21. A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89(6), 063803 (2014).
    [Crossref]
  22. A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22(19), 22456–22469 (2014).
    [PubMed]
  23. A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
    [Crossref]
  24. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  25. A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
    [Crossref]
  26. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
    [Crossref]
  27. A. Pyatenko, M. Yamaguchi, and M. Suzuki, “Laser photolysis of silver colloid prepared by citric acid reduction method,” J. Phys. Chem. B 109(46), 21608–21611 (2005).
    [Crossref] [PubMed]
  28. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  29. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
    [Crossref]
  30. H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
    [Crossref]
  31. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).
  32. N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41(8), 4486–4492 (1990).
    [Crossref] [PubMed]
  33. J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28(10), 2448–2455 (2011).
    [Crossref]

2014 (6)

A. V. Kimel, “All-optical switching: three rules of design,” Nat. Mater. 13(3), 225–226 (2014).
[Crossref] [PubMed]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89(6), 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
[Crossref]

O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda, “Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express 4(1), 92–100 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22(19), 22456–22469 (2014).
[PubMed]

2013 (1)

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

2012 (1)

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

2011 (3)

2010 (2)

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
[PubMed]

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[Crossref]

2009 (1)

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

2008 (1)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

2007 (2)

2005 (2)

2004 (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

2000 (1)

Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
[Crossref]

1999 (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

1991 (1)

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[Crossref]

1990 (2)

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41(8), 4486–4492 (1990).
[Crossref] [PubMed]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Andrejco, M. J.

Barbosa-Silva, R.

Brito-Silva, A. M.

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
[PubMed]

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[Crossref]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2136–2140 (2007).
[Crossref]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

Chari, R.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

Crespo-Sosa, A.

de Araújo, C. B.

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89(6), 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22(19), 22456–22469 (2014).
[PubMed]

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18(21), 21636–21644 (2010).
[PubMed]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2136–2140 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues., “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[Crossref]

Delong, K. W.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Falcão-Filho, E. L.

Fu, Y.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

Galembeck, A.

Gao, L.

Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
[Crossref]

García-Ramírez, E. V.

Gomes, A. S. L.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[Crossref]

Gómez, L. A.

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[Crossref]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2136–2140 (2007).
[Crossref]

Gong, Q.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Gong, Y.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Hu, X.

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Hua, X.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

Jayabalan, J.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28(10), 2448–2455 (2011).
[Crossref]

Jiang, P.

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Jorge, K. C.

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
[Crossref]

Kassab, L. R. P.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

Khan, S.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

Kimel, A. V.

A. V. Kimel, “All-optical switching: three rules of design,” Nat. Mater. 13(3), 225–226 (2014).
[Crossref] [PubMed]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Kothari, N. C.

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41(8), 4486–4492 (1990).
[Crossref] [PubMed]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Li, Z.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

Li, Z. Y.

Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
[Crossref]

Liu, X.

Lu, H.

Ma, H.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[Crossref]

Mao, D.

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Mizrahi, V.

Mota-Santiago, P.

Ohnuma, M.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

Oliveira, M. M.

Oliveira, T. R.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

Oliver, A.

Oyoshi, K.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

Pyatenko, A.

A. Pyatenko, M. Yamaguchi, and M. Suzuki, “Laser photolysis of silver colloid prepared by citric acid reduction method,” J. Phys. Chem. B 109(46), 21608–21611 (2005).
[Crossref] [PubMed]

Reyes-Esqueda, J.-A.

Reyna, A. S.

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89(6), 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22(19), 22456–22469 (2014).
[PubMed]

Rodrigues, J. J.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Saifi, M. A.

Sánchez-Dena, O.

Sato, R.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Silva, D. M.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

Singh, A.

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

Sobral-Filho, R. G.

Stegeman, G. I.

Suzuki, M.

A. Pyatenko, M. Yamaguchi, and M. Suzuki, “Laser photolysis of silver colloid prepared by citric acid reduction method,” J. Phys. Chem. B 109(46), 21608–21611 (2005).
[Crossref] [PubMed]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Takeda, Y.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

Tamayo-Rivera, L.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Wang, L.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wu, Y. M.

Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
[Crossref]

Xin, C.

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Yamaguchi, M.

A. Pyatenko, M. Yamaguchi, and M. Suzuki, “Laser photolysis of silver colloid prepared by citric acid reduction method,” J. Phys. Chem. B 109(46), 21608–21611 (2005).
[Crossref] [PubMed]

Yang, H.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Zarbin, A. J. G.

Zhang, Y.

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

Appl. Phys. B (1)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[Crossref]

Appl. Phys. Lett. (4)

X. Hu, P. Jiang, C. Xin, H. Yang, and Q. Gong, “Nano-Ag: polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009).
[Crossref]

Z. Li, X. Hua, Y. Zhang, Y. Fu, H. Yang, and Q. Gong, “All-optical switching via tunable coupling of nanocomposite photonic crystal microcavities,” Appl. Phys. Lett. 99(14), 141105 (2011).
[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (1)

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112(10), 103524 (2012).
[Crossref]

J. Lumin. (1)

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO-GeO2 films containing gold nanoparticles,” J. Lumin. 133, 180–183 (2013).
[Crossref]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

J. Nanomater. (1)

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

J. Phys. Chem. B (2)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

A. Pyatenko, M. Yamaguchi, and M. Suzuki, “Laser photolysis of silver colloid prepared by citric acid reduction method,” J. Phys. Chem. B 109(46), 21608–21611 (2005).
[Crossref] [PubMed]

Nat. Mater. (1)

A. V. Kimel, “All-optical switching: three rules of design,” Nat. Mater. 13(3), 225–226 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (3)

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: Exact results for spherical grains,” Phys. Rev. A 41(8), 4486–4492 (1990).
[Crossref] [PubMed]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89(6), 063803 (2014).
[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90(6), 063835 (2014).
[Crossref]

Phys. Rev. B (1)

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization,” Phys. Rev. B 90(12), 125417 (2014).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical properties of metal-dielectric composites,” Phys. Status Solidi, B Basic Res. 220(2), 997–1008 (2000).
[Crossref]

Other (4)

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

H. Ishikawa, Ultrafast All-Optical Signal Processing Devices (Wiley, 2008).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Linear absorption spectra of the metal-colloid with f=4.0× 10 5 and acetone (cell thickness: 1 mm). (b) Size distribution histogram of the NPs after photofragmentation. A TEM image of the silver NPs is shown in the inset.
Fig. 2
Fig. 2 Normalized (a) closed-aperture and (b) open-aperture Z-scan profiles obtained for different NPs volume fractions. Laser peak intensity: 9.5 GW / c m 2 .
Fig. 3
Fig. 3 Dependence with the NPs volume fraction of: (a) NL refractive indices, (b) NL absorption coefficients, (c) total effective NL refractive index and (d) total effective NL absorption coefficient. In (a) and (b) the laser peak intensity was 9.5 GW / c m 2 . Normalized (e) Closed-aperture and (f) Open-aperture Z-scan profiles for f=5.9× 10 5 , obtained for different laser peak intensities. The solid lines were obtained from Eqs. (3) and (4).
Fig. 4
Fig. 4 (a) Transmitted Kerr signal in 532 nm for silver colloid for pump intensities of: I 1 =10 GW / c m 2 , I 2 =8.6 GW / c m 2 , I 3 =8.0 GW / c m 2 and I 4 =7.0 GW / c m 2 and I probe =0.1( I pump ) . The inset is the Kerr signal for CS2. (b) Dependence of | ΔT | / I pump as a function of the pump intensity. Volume fraction: 5.9× 10 5 .
Fig. 5
Fig. 5 Figures-of-merit for all-optical switching.

Tables (1)

Tables Icon

Table 1 NPs volume fraction, f, laser intensity, I, and the corresponding total NL refractive indices, nNL(I), total NL absorption coefficients, αNL(I), and figures-of-merit (T and W)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T PV I 0.396k L eff (1) n 2 +0.198k L eff (2) n 4 I+0.102k L eff (3) n 6 I 2 ,
ΔT I ( 2 ) 3 2 L eff (1) ( α 2 + α 4 I+ α 6 I 2 ).
T(z,Δ Φ 0 )1+ N=1 3 ( 4N )Δ Φ 0 (2N+1) z/ z 0 [ ( z/ z 0 ) 2 + (2N+1) 2 ] [ ( z/ z 0 ) 2 +1 ] N ,
T(z, q 0 ) 1 π q 0 ln[ 1+ q 0 exp( τ 2 ) ]dτ .
χ eff (3) =f L 2 | L | 2 χ np (3) + χ h (3) ,
χ eff (5) =f L 2 | L | 4 χ np (5) 6 10 f L 3 | L | 4 ( χ np (3) ) 2 3 10 fL | L | 6 | χ np (3) | 2 ,
χ eff (7) =f L 2 | L | 6 χ np (7) + 12 35 f L 4 | L | 6 ( χ np (3) ) 3 + 3 35 f | L | 8 [ 4 L 2 χ np (3) + | L | 2 ( χ np (3) ) * ] | χ np (3) | 2 4 7 fL | L | 6 [ 2 L 2 χ np (3) + | L | 2 ( χ np (3) ) * ] χ np (5) ,

Metrics