Abstract

Under 980 nm excitation, the temperature dependence of five-photon UV (256 and 276 nm) upconversion luminescence in Yb3+-Er3+ codoped β-NaLuF4 nanocrystals was studied from 303 K to 523 K. The 4D7/2 and 4G9/2 levels of Er3+ are confirmed to be thermally coupled levels. They are the highest energy states for optical thermometry known so far. By using fluorescence intensity ratio technique, optical temperature sensing characteristics based on the 4D7/2/4G9/24I15/2 transitions of Er3+ were reported here for the first time. The obtained sensitivity of this UV-based sensor is higher than that of green-based optical thermometer in low temperature range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
    [Crossref] [PubMed]
  2. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  3. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  4. R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
    [Crossref]
  5. D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
    [Crossref] [PubMed]
  6. K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
    [Crossref]
  7. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  8. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  9. B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  10. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders”, Sens. Actuat. B 164, 96–100 (2012).
  11. W. Xu, Z. G. Zhang, and W. W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
    [Crossref] [PubMed]
  12. K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
    [Crossref]
  13. K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
    [Crossref] [PubMed]
  14. F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
    [Crossref]
  15. G. Chen, H. Liang, H. Liu, G. Somesfalean, and Z. Zhang, “Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes,” Opt. Express 17(19), 16366–16371 (2009).
    [Crossref] [PubMed]
  16. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]

2013 (1)

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

2012 (6)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders”, Sens. Actuat. B 164, 96–100 (2012).

W. Xu, Z. G. Zhang, and W. W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
[Crossref] [PubMed]

2011 (5)

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

2010 (2)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

2009 (1)

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Bednarkiewicz, A.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B. S.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, W. W.

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Chen, G.

Cussó, F.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Dong, B.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Feng, Z. Q.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Fischer, L. H.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Harms, G. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

He, Y. Y.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

León-Luis, S. F.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Li, Z. P.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liang, H.

Liu, H.

Liu, N.

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

Liu, Z.

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liu, Z. Y.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Lv, C. J.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders”, Sens. Actuat. B 164, 96–100 (2012).

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Nyk, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Qin, W. P.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Rai, S. B.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

Rakov, N.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders”, Sens. Actuat. B 164, 96–100 (2012).

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Samoc, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Shi, F.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Somesfalean, G.

Strek, W.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Verma, R. K.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Wang, J. S.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Wawrzynczyk, D.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Wolfbeis, O. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Xu, W.

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhai, X. S.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

Zhang, D. S.

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

Zhang, Z.

Zhang, Z. G.

Zhao, D.

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

Zheng, K. Z.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, “Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting Nanoparticles for Nanoscale Thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

CrystEngComm (1)

F. Shi, J. S. Wang, X. S. Zhai, D. Zhao, and W. P. Qin, “Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence,” CrystEngComm 13(11), 3782–3787 (2011).
[Crossref]

J. Fluor. Chem. (1)

K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Temperature-dependent six-photon upconversion fluorescence of Er3+,” J. Fluor. Chem. 132(1), 5–8 (2011).
[Crossref]

J. Mater. Chem. C (1)

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

Nanoscale (2)

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Sens. Actuat. B (1)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders”, Sens. Actuat. B 164, 96–100 (2012).

Sens. Actuators B Chem. (1)

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) UC emission spectra of NaLuF4:Yb3+/Er3+ nanocrystals in the range of 230 − 350 nm; (b) the log-log plots of emission intensity versus excitation power for 4D7/24I15/2 and 4G9/24I15/2 transitions of Er3+.
Fig. 2
Fig. 2 Energy level diagrams of Yb3+ and Er3+ ions, and possible UC processes.
Fig. 3
Fig. 3 Temperature-dependent UV UCLs of Er3+ in Yb3+/Er3+ codoped NaLuF4 nanocrystals. All spectra have been normalized to the emission intensities from the 4D7/24I15/2 transition of Er3+ ions.
Fig. 4
Fig. 4 Temperature sensing based on the UV UCLs of Er3+ ions. (a) UV UCLs of Er3+ from 4D7/2 and 4G9/2 levels at different temperature; (b) monolog plot of the FIR as a function of inverse absolute temperature; (c) FIR relative to the temperature; (d) sensor sensitivity as a function of the temperature in the range from 303 K to 523 K.
Fig. 5
Fig. 5 (a) Temperature-dependent green UCLs of Er3+ in Yb3+/Er3+ codoped NaLuF4 nanocrystals. All spectra have been normalized to the emission intensities from the 2H11/24I15/2 transition of Er3+ ions; (b) Temperature dependent sensor sensitivities deduced from the UV UCLs (4D7/2/4G9/24I15/2) and green UC emissions (2H11/2/4S3/24I15/2) of Er3+.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ FIR ]= I( D 4 7/2 ) I( G 4 9/2 ) = c 1 (ν) A 1 g 1 h ν 1 β 1 c 2 (ν) A 2 g 2 h ν 2 β 2 exp( Δ E 12 kT )=Cexp( Δ E 12 kT ).
S= d[FIR] dT =FIR( Δ E 12 k T 2 )[ 6,8,10 ]

Metrics