Abstract

A highly controllable optical bistability in a Tm:YAG ceramic laser system is reported, which is attributed to the thermal-induced change in the stability of the resonator. The width of the bistable region can be tuned in a large scale from 0.8 W to 6.3 W. At nearly semi-confocal cavity configuration, a second lasing condition was observed in the bistable region with a modulated shape of the laser beam and a broadened laser spectrum. The influence of the temperature on the bistable laser operation was also discussed in detail. To our knowledge, this is the first report on the optical bistability effect in Tm:YAG ceramic lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical bistability effects in a Tm,Ho:YLF laser at room temperature

Xinlu Zhang and Yuezhu Wang
Opt. Lett. 32(16) 2333-2335 (2007)

Highly efficient 2 μm Tm:YAG ceramic laser

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian
Opt. Lett. 37(6) 1076-1078 (2012)

Formation mechanism of optical bistability in end-pumped quasi-three-level Tm, Ho:YLF lasers

Xinlu Zhang, Li Li, Yang Zheng, and Yuezhu Wang
J. Opt. Soc. Am. B 26(12) 2434-2439 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28(4), 1033–1040 (1992).
    [Crossref]
  2. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
    [Crossref] [PubMed]
  3. D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
    [Crossref]
  4. L. S. Yan, A. E. Willner, X. X. Wu, A. L. Yi, A. Bogoni, Z. Y. Chen, and H. Y. Jiang, “All-optical signal processing for ultra high speed optical systems and networks,” J. Lightwave Technol. 30(24), 3760–3770 (2012).
    [Crossref]
  5. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
    [Crossref]
  6. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
    [Crossref] [PubMed]
  7. H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
    [Crossref]
  8. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985)
  9. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
    [Crossref] [PubMed]
  10. A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
    [Crossref] [PubMed]
  11. J. H. Liu, H. J. Zhang, X. Mateos, W. J. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).
    [Crossref] [PubMed]
  12. X. L. Zhang and Y. Z. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).
    [Crossref] [PubMed]
  13. Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
    [Crossref]
  14. V. E. Hartwell, H. Nakajima, and N. Djeu, “Pump interference and optical bistability effects in a Tm,Ho:YAG microlaser,” Opt. Lett. 20(21), 2210–2212 (1995).
    [Crossref] [PubMed]
  15. X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
    [Crossref]
  16. J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
    [Crossref]
  17. X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
    [Crossref]
  18. V. Sazegari, M. R. J. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]

2014 (1)

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

2012 (1)

2011 (1)

X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
[Crossref]

2010 (1)

2008 (3)

2007 (1)

2004 (1)

Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
[Crossref]

2003 (2)

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

2001 (1)

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

1996 (1)

1995 (2)

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

V. E. Hartwell, H. Nakajima, and N. Djeu, “Pump interference and optical bistability effects in a Tm,Ho:YAG microlaser,” Opt. Lett. 20(21), 2210–2212 (1995).
[Crossref] [PubMed]

1992 (2)

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28(4), 1033–1040 (1992).
[Crossref]

J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[Crossref]

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Albers, P.

J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[Crossref]

Ames, L. L.

Assanto, G.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

Bernd, H. W.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Bogoni, A.

Brinkmann, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Brockman, P.

Calloway, R. S.

Chen, Z. Y.

Danicke, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Djeu, N.

Forney, P.

Frauchiger, J.

J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[Crossref]

Fu, X.

X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
[Crossref]

Goldner, Ph.

Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
[Crossref]

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Gong, M. L.

X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
[Crossref]

Guillot-Noël, O.

Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
[Crossref]

Hagan, D. J.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

Han, W. J.

Hartwell, V. E.

Hawley, J. G.

Higel, P.

Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
[Crossref]

Huang, H. T.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Jafari, A. K.

Jiang, H. Y.

Kakitsuka,

Kane, T. J.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28(4), 1033–1040 (1992).
[Crossref]

Keller, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Klein, S. H.

Kubo, T. S.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28(4), 1033–1040 (1992).
[Crossref]

Kuramochi, T.

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Liu, J. H.

Liu, Q.

X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
[Crossref]

Liu, X.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Mateos, X.

Matsuo, S.

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Milani, M. R. J.

Nakajima, H.

Nihei, H.

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

Notomi, M.

Okamoto, A.

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

Ott, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Otto, R. G.

Petrov, V.

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Robinson, P. A.

Sato, T.

Sazegari, V.

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Shen, D. Y.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Shen, Y.

Shinya, A.

Steakley, B. C.

Stone, R.

Swanson, D.

Tanabe, E.

Tang, D. Y.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Targ, R.

Theisen, D.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Vanstryland, E. W.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

Wang, G. P.

Wang, L.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Wang, Y.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Wang, Y. Z.

Wang, Z.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

Weber, H. P.

J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[Crossref]

Willner, A. E.

Wu, X. X.

Yan, L. S.

Yi, A. L.

Yosia, T.

Zarifis, V.

Zhang, H. J.

Zhang, J.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Zhang, X. L.

Zhu, H. Y.

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Vanstryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67(15), 2120 (1995).
[Crossref]

IEEE J. Quantum Electron. (3)

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28(4), 1033–1040 (1992).
[Crossref]

J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28(4), 1046–1056 (1992).
[Crossref]

X. Fu, Q. Liu, and M. L. Gong, “Distributed-side-pumped slab lasers: theoretical design and modeling,” IEEE J. Quantum Electron. 47(4), 479–485 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

X. Liu, H. T. Huang, H. Y. Zhu, Y. Wang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A modified model for the LD pumped 2μm Tm:YAG laser: thermal behavior and laser performance,” Opt. Commun. 332, 332–338 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

Ph. Goldner, O. Guillot-Noël, and P. Higel, “Optical bistability in Yb3+:YCa4O(BO3)3 crystal,” Opt. Mater. 26(3), 281–286 (2004).
[Crossref]

Phys. Rev. Lett. (1)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Proc. SPIE (2)

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Other (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup for the bistable laser operation.
Fig. 2
Fig. 2 Bistable laser operation at different physical cavity lengths.
Fig. 3
Fig. 3 Change of the thermal focal length during the bistable laser operation.
Fig. 4
Fig. 4 Transformation of the output beam for a stable resonator containing a thermal lens f.
Fig. 5
Fig. 5 Bistable laser operation with the existence of the second lasing condition.
Fig. 6
Fig. 6 Shapes of the laser beams in region 1 and region 2.
Fig. 7
Fig. 7 Spectrums of the lasers in region 1 and region 2.
Fig. 8
Fig. 8 The OPD profile on x direction with five horizontal cascade diode bars and the parabolic approximation.
Fig. 9
Fig. 9 Distributions of the pump laser field and the thermal focal lengths for different pump distributions.
Fig. 10
Fig. 10 Shapes of the laser beams in region 1 and region 2 with the fiber coupled LD.

Tables (2)

Tables Icon

Table 1 Measured and Calculated Thermal Focal Lengths

Tables Icon

Table 2 Temperature dependence of the width of the bistable region

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T=[ A B C D ]=TR1Tl1TfTl2TR2Tl2TfTl1
Tf=[ 1 0 1 f 1 ]
ω 0 = ω M 2
ω M 2 = λL' π g' 2 g' 1 (1 g' 1 g' 2 )
L'=l1+l2 l1l2 f , g' 1 =1 L' R1 l2 f , g' 2 =1 L' R2 l1 f
OPD(x)=OPD0 (xx0) 2 2f
f(x)= (xx0) 2 2[OPD(x)-OPD(x0)] = (xx0) 2 2 dn dT [T(x)-T(x0)] dz

Metrics