Abstract

Raman lasers based on mid-infrared fibers operating at 3-5 µm atmospheric transparency window are attractive sources for several applications. Compared to fluoride and chalcogenide fibers, tellurite fibers are more advantageous for high power Raman fiber laser sources at 3-5 µm because of their broader Raman gain bandwidth, much larger Raman shift and better physical and chemical properties. Here we report on our simulations for the development of 10-watt-level 3-5 µm Raman lasers using tellurite fibers as the nonlinear gain medium and readily available continuous-wave (cw) and Q-switched erbium-doped fluoride fiber lasers at 2.8 µm as the pump sources. Our results show that a watt-level or even ten-watt-level fiber laser source in the 3-5 µm atmospheric transparency window can be achieved by utilizing the 1st- and 2nd-order Raman scattering in the tellurite fiber. The presented numerical study provides valuable guidance for future 3-5 um Raman fiber laser development.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and simulation of a mid-IR 4.3 µm Raman laser in chalcogenide glass fibers

Xuefeng Peng, Peiqing Zhang, Xunsi Wang, Haitao Guo, Pengfei Wang, and Shixun Dai
OSA Continuum 2(8) 2281-2292 (2019)

Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm

Chen Wei, Xiushan Zhu, Robert A. Norwood, Feng Song, and N. Peyghambarian
Opt. Express 21(24) 29488-29504 (2013)

Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber

Chenquan Ni, Weiqing Gao, Xiangcai Chen, Li Chen, Yong Zhou, Wei Zhang, Jigang Hu, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 56(33) 9171-9178 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
    [Crossref] [PubMed]
  2. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources, Top. Appl. Phys.89, I.T. Sorokina and K.L. Vodopyanov, ed. (Springer, 2003).
  3. A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
    [Crossref]
  4. T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
    [Crossref]
  5. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
    [Crossref]
  6. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  7. S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Mosakelv, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
    [Crossref]
  8. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).
  9. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
    [Crossref] [PubMed]
  10. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
    [Crossref] [PubMed]
  11. C. K. N. Patel, “Continuous-wave laser action on vibrational-rotational transitions of CO2,” Phys. Rev. 136(5A), A1187–A1193 (1964).
    [Crossref]
  12. A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).
  13. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
    [Crossref] [PubMed]
  14. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
    [Crossref] [PubMed]
  15. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref] [PubMed]
  16. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  17. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref] [PubMed]
  18. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 microm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 microm,” Opt. Express 14(2), 678–685 (2006).
    [Crossref] [PubMed]
  19. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
    [Crossref]
  20. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  21. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  22. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  23. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
    [Crossref] [PubMed]
  24. G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser seeded fiber MOPA at 2.8 μm,” J. Lightwave Technol. 32(23), 3951–3955 (2014).
  25. C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
    [Crossref]
  26. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-mum emission wavelength,” Appl. Opt. 36(33), 8595–8600 (1997).
    [Crossref] [PubMed]
  27. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  28. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  29. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
    [Crossref]
  30. P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
    [Crossref]
  31. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [Crossref] [PubMed]
  32. V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett. 36(21), 4152–4154 (2011).
    [Crossref] [PubMed]
  33. V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express 20(17), 19412–19419 (2012).
    [PubMed]
  34. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
    [Crossref] [PubMed]
  35. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref] [PubMed]
  36. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  37. P. A. Thielen, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11(24), 3248–3253 (2003).
    [Crossref] [PubMed]
  38. G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
    [Crossref]
  39. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  40. G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
    [Crossref]
  41. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightwave Technol. 21(5), 1300–1306 (2003).
    [Crossref]
  42. G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33(17), 2014–2016 (2008).
    [Crossref] [PubMed]
  43. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
    [Crossref] [PubMed]
  44. S. D. Jackson and P. H. Muir, “Theory and numerical simulation of nth-order cascaded Raman fiber lasers,” J. Opt. Soc. Am. B 18(9), 1297–1306 (2001).
    [Crossref]
  45. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]

2014 (4)

2013 (5)

2012 (3)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express 20(17), 19412–19419 (2012).
[PubMed]

2011 (5)

2010 (3)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33(17), 2014–2016 (2008).
[Crossref] [PubMed]

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

2007 (3)

2006 (2)

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 microm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 microm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

2004 (1)

2003 (2)

2001 (1)

1998 (1)

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

1997 (2)

1994 (3)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

1989 (1)

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

1988 (1)

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[Crossref]

1964 (1)

C. K. N. Patel, “Continuous-wave laser action on vibrational-rotational transitions of CO2,” Phys. Rev. 136(5A), A1187–A1193 (1964).
[Crossref]

Adler, F.

Aggarwal, I. D.

Akimov, V. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Androz, G.

Arbore, M. A.

Arp, R.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Balakrishnan, K.

Bauer, A.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Benabid, F.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Bernier, M.

Biegert, J.

Burr, K. C.

Caffey, D.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Carbonnier, C.

Caron, N.

Carrier, J.

Cecchetti, K.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Chaudhari, C.

Chu, S.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Corwin, K. L.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Couny, F.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

D’Aria, D. M.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

Day, T.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Dong, G.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

El-Amraoui, M.

El-Taher, A. E.

Erny, C.

Faucher, D.

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Mosakelv, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Fejer, M. M.

Fiedler, T.

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Forchel, A.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Fortin, V.

Frerichs, C.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Frolov, M. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Gapontsev, V. P.

Gong, Q.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hashida, M.

Henderson-Sapir, O.

Henson, M.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[Crossref]

Hofling, S.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Hu, J.

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jain, R.

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[Crossref]

Jones, A. M.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Jose, R.

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

Kadel, R.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Kamp, M.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[Crossref]

Kean, P. N.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Keller, U.

King, T. A.

Korostelin, Yu. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Kozlovsky, V. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Kühlke, D.

Landman, A. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Lehnhardt, T.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Leitenstorfer, A.

Liao, M.

Martyshkin, D. V.

Masuda, H.

Menyuk, C. R.

Messaddeq, Y.

Mirov, M. S.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Mosakelv, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Mori, A.

Mosakelv, I. S.

Moutzouris, K.

Muir, P. H.

Munch, J.

Murakami, M.

Nampoothiri, A. V. V.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Nicholson, J. W.

Norwood, R. A.

Ohishi, Y.

Ottaway, D. J.

Patel, C. K. N.

C. K. N. Patel, “Continuous-wave laser action on vibrational-rotational transitions of CO2,” Phys. Rev. 136(5A), A1187–A1193 (1964).
[Crossref]

Peyghambarian, N.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Podmar’kov, Yu. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Pushkarsky, M.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Qin, G.

Ratanavis, A.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Reid, D. C.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Roßner, K.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Rowe, C. J.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Rudolph, W.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Sakabe, S.

Salisbury, J. W.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

Sanghera, J. S.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schneider, J.

Shaw, L. B.

Shikano, K.

Shimizu, M.

Shimizu, S.

Sibbett, W.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Sinclair, B. D.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Smith, K.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Song, F.

Supradeepa, V. R.

Suzuki, T.

Takeuchi, E. B.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Tang, C. L.

Tao, H.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Tauermann, T.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Thielen, P. A.

Tobben, H.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

Tokita, S.

Tsang, Y. H.

Unrau, U. B.

Vallée, R.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Voronov, A. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Wang, F.

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, S.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Washburn, B. R.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Wei, C.

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

Wheeler, N. V.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Whitmore, A.

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Worschech, L.

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Xiao, X.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Xu, Y.

Yan, X.

Zhao, X.

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

Zhu, G.

Zhu, X.

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low‐threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[Crossref]

Electron. Lett. (2)

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Appl. Phys. (1)

G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101(9), 093109 (2007).
[Crossref]

J. Lightwave Technol. (3)

A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightwave Technol. 21(5), 1300–1306 (2003).
[Crossref]

G. Zhu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Experimental and numerical investigations on Q-switched laser seeded fiber MOPA at 2.8 μm,” J. Lightwave Technol. 32(23), 3951–3955 (2014).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” J. Lightwave Technol. 42(9), 907–917 (2006).

J. Mod. Opt. (1)

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. Reid, “Experimental evaluation of a fibre Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[Crossref]

J. Non-Cryst. Solids (1)

G. Dong, H. Tao, S. Chu, X. Xiao, S. Wang, X. Zhao, and Q. Gong, “Structural dependence of ultrafast third-order optical nonlinearity of Ge–Ga–Ag–S chalcogenide glasses,” J. Non-Cryst. Solids 354(2-9), 440–444 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (1)

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (14)

G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33(17), 2014–2016 (2008).
[Crossref] [PubMed]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref] [PubMed]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
[Crossref] [PubMed]

V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett. 36(21), 4152–4154 (2011).
[Crossref] [PubMed]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22(19), 1458–1460 (1997).
[Crossref] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
[Crossref] [PubMed]

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (1)

C. K. N. Patel, “Continuous-wave laser action on vibrational-rotational transitions of CO2,” Phys. Rev. 136(5A), A1187–A1193 (1964).
[Crossref]

Proc. SPIE (2)

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

T. Day, M. Pushkarsky, D. Caffey, K. Cecchetti, R. Arp, A. Whitmore, M. Henson, and E. B. Takeuchi, “Quantum cascade lasers for defense & security,” Proc. SPIE 8898, 889802 (2013).
[Crossref]

Remote Sens. Environ. (1)

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

Semicond. Sci. Technol. (1)

A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[Crossref]

Other (1)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources, Top. Appl. Phys.89, I.T. Sorokina and K.L. Vodopyanov, ed. (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Raman gain coefficient of a TBZN tellurite fiber as a function of the Raman shift. Inset shows the propagation loss of the tellurite fiber at 0.5-5 μm wavelength range.
Fig. 2
Fig. 2 Schematic of the 1st- (upper) and 2nd-order (lower) Raman tellurite fiber laser. HR FBG and PR FBG represent high reflectance fiber Bragg grating and partially reflective fiber Bragg grating, respectively. λp, λ1 and λ2 represent the wavelengths of the pump, the 1st- and 2nd-order Stokes waves, respectively.
Fig. 3
Fig. 3 Output power of a 3.53 µm 1st-order Raman fiber laser as a function of the Raman fiber length and the reflectance of the output FBG coupler at a pump power of 20 W. The numbers besides the contour curves are the output powers.
Fig. 4
Fig. 4 Output power of the 1st-order Raman fiber laser as a function of wavelength at a pump power of 20 W when the Raman gain fiber length and the reflectance of the output FBG coupler are fixed at 1 m and 90%, respectively.
Fig. 5
Fig. 5 Output power of the 3.53 µm 1st-order Raman fiber laser (a) as a function of the fiber length for different reflectance of the output FBG coupler and (b) as a function of the reflectance of the output FBG coupler for different fiber lengths when the pump power is 20 W.
Fig. 6
Fig. 6 Output power of the 3.53 µm Raman fiber laser as a function of the pump power (a) for different fiber lengths when the reflectance of the output FBG coupler is 90% and (b) for different reflectances of the output FBG coupler when the Raman gain fiber length is 1 m.
Fig. 7
Fig. 7 Output power of a 3.3 µm 1st-order Raman fiber laser as a function of the Raman fiber length and the reflectance of the output FBG coupler at a pump power of 20 W. The values beside the contour curves are the output powers.
Fig. 8
Fig. 8 Output power of the 1st-order Raman fiber laser as a function of wavelength at a pump power of 20 W. (a) The Raman gain fiber length and the reflectance of the output FBG coupler are fixed at 1.25 m and 98%, respectively and the pump laser is at 2.8 µm; (b) the Raman gain fiber length and the reflection of the output FBG coupler are fixed at 1 m and 90%, respectively and the pump laser is at 2.9 µm.
Fig. 9
Fig. 9 Output power of a 4.77 µm 2nd-order Raman fiber laser as a function of the Raman fiber length and the reflectance of the output FBG coupler when the pump power is 20 W and the 1st-order Stokes oscillates at 3.53 µm. The values beside the contour curves are the output powers.
Fig. 10
Fig. 10 Output power of the 2nd-order Raman fiber laser as a function of wavelength at a pump power of 20 W when the Raman gain fiber length and the reflectance of the output FBG coupler are fixed at 0.34 m and 40.5%, respectively, and the 1st-order Stokes oscillates at 3.53 µm.
Fig. 11
Fig. 11 (a) Output power of the 2nd-order Raman fiber laser as a function of wavelength at a pump power of 20 W when the Raman gain fiber length and the reflectance of the output FBG coupler are fixed at 0.19 m and 88%, respectively, and the 1st-order Stokes oscillates at 3.53 µm. (b) Summary of the calculation results plotted in Fig. 4, Fig. 8, Fig. 10 and Fig. 11(a) shows the feasibility of obtaining a fiber laser at any wavelength between 3 and 5 µm by utilizing 1st-order and 2nd-order Raman scattering in tellurite fiber.
Fig. 12
Fig. 12 Output power of Q-switched 1st-order Raman fiber laser at 3.53 µm as a function of the Raman fiber length and the reflectance of the output FBG coupler when the Q-switched 2.8 µm pump laser has an average power of 20 W. (a) The contour plot and (b) the output power of the Q-switched (red) and cw (blue) Raman fiber laser at 3.53 µm as a function of the pump power.
Fig. 13
Fig. 13 The pulse shapes of the pump pulse and the output Raman signal pulse when the Raman gain fiber length is 0.5 m and the reflectance of the output FBG coupler is 48%. The inset shows the normalized pulse shapes of the pump and the Raman signal (the input pulse is assumed to be Gaussian).
Fig. 14
Fig. 14 The output power of the Q-switched (red) and cw (blue) 2nd-order Raman fiber laser at 4.77 µm as a function of the pump power.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 P p f (z,t) [ P p f (z,t) z + 1 v p P p f (z,t) t ]= 1 P p b (z,t) [ P p b (z,t) z + 1 v p P p b (z,t) t ] = α p ω p ω 1 γ 1 [ P 1 f (z,t)+ P 1 b (z,t) ],
1 P 1 f (z,t) [ P 1 f (z,t) z + 1 v 1 P 1 f (z,t) t ]= 1 P 1 b (z,t) [ P 1 b (z,t) z + 1 v 1 P 1 b (z,t) t ] = α 1 + γ 1 [ P p f (z,t)+ P p b (z,t) ].
1 P 1 f (z,t) [ P 1 f (z,t) z + 1 v 1 P 1 f (z,t) t ]= 1 P 1 b (z,t) [ P 1 b (z,t) z + 1 v 1 P 1 b (z,t) t ] = α 1 + γ 1 [ P p f (z,t)+ P p b (z,t) ] ω 1 ω 2 γ 2 [ P 2 f (z,t)+ P 2 b (z,t) ],
1 P 2 f (z,t) [ P 2 f (z,t) z + 1 v 2 P 2 f (z,t) t ]= 1 P 2 b (z,t) [ P 2 b (z,t) z + 1 v 2 P 2 b (z,t) t ] = α 2 + γ 2 [ P 1 f (z,t)+ P 1 b (z,t) ].
P p f (0)= P in , P p b (L)= R p P p f (L),
P k f (0)= R k b P k b (0), P k b (L)= R k f P k f (L),(k=1,2).
P out =(1 R n f ) P n f (L),(n=1,2).

Metrics