Abstract

A simple and flexible method is presented for the generation of optical focal field with prescribed characteristics. By reversing the field pattern radiated from a uniform line source, for which the electric current is constant along its extent, situated at the focus of a 4Pi focusing system formed by two confocal high-NA objective lenses, the required illumination distribution at the pupil plane for creating optical focal field with desired properties can be obtained. Numerical example shows that an arbitrary length optical needle with extremely high longitudinal polarization purity and consistent transverse size of ~0.36λ over the entire depth of focus (DOF) can be created with this method. Coaxially double-focus with spot size of ~0.36λ in the transversal direction and ~λ in the axial direction separated by a prescribed spacing is illustrated as another example. The length of optical needle field and the interval between double-focus are determined by the length of uniform line source. These engineered focal fields may found potential applications in particle acceleration, optical microscopy, optical trapping and manipulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation

Jiming Wang, Weibin Chen, and Qiwen Zhan
Opt. Express 18(21) 21965-21972 (2010)

Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles

Jinshuai Diao, Weizheng Yuan, Yiting Yu, Yechuan Zhu, and Yan Wu
Opt. Express 24(3) 1924-1933 (2016)

Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent

Harold Dehez, Alexandre April, and Michel Piché
Opt. Express 20(14) 14891-14905 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
    [Crossref]
  2. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  3. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [Crossref]
  4. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19(22), 1807–1809 (1994).
    [Crossref] [PubMed]
  5. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
    [Crossref] [PubMed]
  6. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
    [Crossref]
  7. Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett. 34(13), 1961–1963 (2009).
    [PubMed]
  8. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt. 48(6), 1114–1118 (2009).
    [Crossref] [PubMed]
  9. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM01 laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009).
    [Crossref] [PubMed]
  10. H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
    [Crossref]
  11. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  12. T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
    [Crossref]
  13. J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
    [Crossref]
  14. Y. Zhao, Q. Zhan, Y. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005).
    [Crossref] [PubMed]
  15. K. Huang, P. Shi, X. L. Kang, X. B. Zhang, and Y. P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35(7), 965–967 (2010).
    [Crossref] [PubMed]
  16. N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4pi focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
    [Crossref] [PubMed]
  17. Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
    [Crossref]
  18. Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
    [Crossref] [PubMed]
  19. S. Yan, B. Yao, and R. Rupp, “Shifting the spherical focus of a 4Pi focusing system,” Opt. Express 19(2), 673–678 (2011).
    [Crossref] [PubMed]
  20. T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
    [Crossref]
  21. J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
    [Crossref]
  22. W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
    [Crossref] [PubMed]
  23. J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
    [Crossref] [PubMed]
  24. W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
    [Crossref]
  25. J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
    [Crossref]
  26. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd Edition (J. Wiley, 1998).
  27. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
    [Crossref]
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Ser. A 253, pp. 358–379 (1959).
    [Crossref]
  29. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  30. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
    [PubMed]
  31. R. Liu, B. Z. Dong, G. Z. Yang, and B. Y. Gu, “Generation of pseudo-nondiffracting beams with use of diffractive phase elements designed by the conjugate-gradient method,” J. Opt. Soc. Am. A 15(1), 144–151 (1998).
    [Crossref]
  32. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21(18), 20692–20706 (2013).
    [Crossref] [PubMed]

2013 (5)

Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
[Crossref]

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21(18), 20692–20706 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
[Crossref] [PubMed]

H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
[PubMed]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

2011 (3)

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

S. Yan, B. Yao, and R. Rupp, “Shifting the spherical focus of a 4Pi focusing system,” Opt. Express 19(2), 673–678 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (5)

2008 (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

2007 (1)

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

2000 (1)

1998 (1)

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

1995 (1)

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

1994 (1)

Ai, M.

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

April, A.

Bokor, N.

Brown, T. G.

Chen, W.

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
[Crossref]

Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
[Crossref] [PubMed]

Cheng, W.

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Chong, T.

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Davidson, N.

De Koninck, Y.

Dehez, H.

Dong, B. Z.

Fernow, R. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Fourmaux, S.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Gu, B. Y.

Han, W.

Harada, Y.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Huang, K.

Kang, X. L.

Kano, H.

Kieffer, J. C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Kim, G. H.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Kim, W. C.

Kimura, W. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Kusche, K. P.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Légaré, F.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Leger, J. R.

Li, Y. P.

Lin, J.

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

Liu, J.

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

Liu, R.

Liu, T.

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

Liu, Y.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

MacLean, J. P.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Park, K. S.

Park, N. C.

Park, Y. P.

Payeur, S.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Piché, M.

Pogorelsky, I. V.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Pu, J.

Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
[Crossref]

Romea, R. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Rupp, R.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Sato, S.

Schmidt, B. E.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, P.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Steinhauer, L. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Tan, J.

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

Tan, J. B.

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

Tan, W.

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Tan, X.

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

Tchervenkov, C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

Terakado, G.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Wang, H.

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, J.

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
[Crossref] [PubMed]

Wang, R.

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

Wang, X.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

Waseda, Y.

Watanabe, K.

Yan, S.

Yang, G. Z.

Yang, Y.

Yao, B.

Yoon, Y. J.

Youngworth, K. S.

Yuan, G.

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Zhan, Q.

W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21(18), 20692–20706 (2013).
[Crossref] [PubMed]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18(21), 21965–21972 (2010).
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
[Crossref]

Y. Zhao, Q. Zhan, Y. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

Zhang, X. B.

Zhang, Y.

Zhao, D.

Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
[Crossref]

Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
[Crossref] [PubMed]

Zhao, Y.

Adv. Opt. Photon (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101(4), 041105 (2012).
[Crossref]

J. Mod. Opt. (1)

T. Liu, J. B. Tan, J. Liu, and J. Lin, “Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel,” J. Mod. Opt. 60(5), 378–381 (2013).
[Crossref]

J. Opt. (1)

W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Commun. (3)

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Three-dimensional focus engineering using dipole array radiation pattern,” Opt. Commun. 284(12), 2668–2671 (2011).
[Crossref]

J. Liu, M. Ai, J. Tan, R. Wang, and X. Tan, “Focusing of cylindrical-vector beams in elliptical mirror based system with high numerical aperture,” Opt. Commun. 305, 71–75 (2013).
[Crossref]

Opt. Eng. (2)

T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36λ beam size and pure longitudinal polarization,” Opt. Eng. 52(7), 074104 (2013).
[Crossref]

H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46(6), 065201 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (8)

Phys. Lett. A (1)

Z. Chen, J. Pu, and D. Zhao, “Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams,” Phys. Lett. A 377(34–36), 2231–2234 (2013).
[Crossref]

Phys. Rev. Lett. (2)

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[Crossref] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Other (3)

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd Edition (J. Wiley, 1998).

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Ser. A 253, pp. 358–379 (1959).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the proposed method. The uniform line source centered on the focus of 4Pi focusing system consisting of two confocal high-NA objective lenses is aligned along the optical axis. The radiation field is entirely collected and reversely propagated to the focus volume.
Fig. 2
Fig. 2 Generation of optical needle with different lengths by illuminating the 4Pi focusing system with two counter-propagating radially polarized beams E i (r) with a relative π phase shift. (a) total electric energy densities |E | 2 in the r-z plane, (b) corresponding phase distributions of the E z component, and (c) axial electric energy densities |E(0,z) | 2 for (i) 4λ , (ii) 6λ , (iii) 8λ , (iv) 10λ length uniform line source, respectively; (d) input field distribution at the normalized pupil plane for L=8λ .
Fig. 3
Fig. 3 Generation of double-focus with alterable interval by illuminating the 4Pi focusing system with two counter-propagating radially polarized beams E i (r) with same-phase. Total electric energy densities |E | 2 in the r-z plane for (i) 4λ , (ii) 6λ , (iii) 8λ , (iv) 10λ length uniform line source, respectively.
Fig. 4
Fig. 4 DOF of optical needle and spacing between double-focus versus length of uniform line source.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(z')={ I 0 0 x'=0, y'=0, |z'|L/2 elsewhere
F (θ)=Csinθ sin[( kL /2 )cosθ] ( kL /2 )cosθ e θ
E i (r)= F (θ) / cosθ
E r (r,z)=2A 0 θ max E i (r)P(θ) sinθcosθ J 1 (krsinθ)exp(ikzcosθ)dθ
E z (r,z)=j2A 0 θ max E i (r)P(θ) sin 2 θ J 0 (krsinθ)exp(ikzcosθ)dθ

Metrics