Abstract

Abstract: In this paper, we experimentally investigate the throughput of IEEE 802.11n 2x2 multiple-input-multiple-output (MIMO) signals in a radio-over-fiber-based distributed antenna system (DAS) with different fiber lengths and power imbalance. Both a MIMO-supported access point (AP) and a spatial-diversity-supported AP were separately employed in the experiments. Throughput measurements were carried out with wireless users at different locations in a typical office environment. For the different fiber length effect, the results indicate that MIMO signals can maintain high throughput when the fiber length difference between the two remote antenna units (RAUs) is under 100 m and falls quickly when the length difference is greater. For the spatial diversity signals, high throughput can be maintained even when the difference is 150m. On the other hand, the separation of the MIMO antennas allows additional freedom in placing the antennas in strategic locations for overall improved system performance, although it may also lead to received power imbalance problems. The results show that the throughput performance drops in specific positions when the received power imbalance is above around 13dB. Hence, there is a trade-off between the extent of the wireless coverage for moderate bit-rates and the area over which peak bit-rates can be achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems

Yuting Fan, Jianqiang Li, Kun Xu, Hao Chen, Xun Lu, Yitang Dai, Feifei Yin, Yuefeng Ji, and Jintong Lin
Opt. Express 21(18) 20529-20543 (2013)

Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber

Yi Lei, Jianqiang Li, Yuting Fan, Dawei Yu, Songnian Fu, Feifei Yin, Yitang Dai, and Kun Xu
Opt. Express 24(25) 28372-28382 (2016)

MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

M. B. Othman, Lei Deng, Xiaodan Pang, J. Caminos, W. Kozuch, K. Prince, Xianbin Yu, Jesper Bevensee Jensen, and I. Tafur Monroy
Opt. Express 19(26) B537-B542 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Alade, H.-L. Zhu, and H. Osman, “”The impact of antenna selection and location on the performance of DAS in a multi-storey building,” presented at IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April.2013, pp. 3213 - 3218.
  2. M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage,” in Proceedings of OFC/NFOEC 2007, Anaheim, California, United States, Mar.2007, paper JThA81.
    [Crossref]
  3. H.-L. Zhu, “Performance comparison between distributed antenna and microcellular systems,” IEEE J. Sel. Areas Comm. 29(6), 1151–1163 (2011).
    [Crossref]
  4. M. J. Koonen and E. Tangdiongga, “Photonic home area networks,” J. Lightwave Technol. 32(4), 591–604 (2014).
    [Crossref]
  5. J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
    [Crossref]
  6. P. Monteiro, S. Pato, E. López, D. Wake, N. J. Gomes, and A. Gameiro, “Fiber optic networks for distributed radio architectures: FUTON concept and operation,” presented at IEEE Wireless Communications and Networking Conference Workshops (WCNC), Sydney, Australia, April.2010.
    [Crossref]
  7. C. Liu, J. Wang, L. Cheng, M. Zhu, and G.-K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
    [Crossref]
  8. W. Qing, D. Debbarma, S. H. De Groot, I. Niemegeers, and A. Lo, “Cell switching mechanisms for access point sharing in WLAN over radio-over-fiber systems,” presented at IEEE 20th Symposium on Communications and Vehicular Technology(SCVT), Benelux, Namur, November.2013.
  9. http://standards.ieee.org/getieee802/download/802.11-2012.pdf .
  10. J. Q. Li., Y. T. Fan, H. Chen, K. Xu, Y.T. Dai, F. F. Yin, et al., “Radio-over-fiber-based distributed antenna systems supporting IEEE 802.11N/AC standards,” presented at 12th International Conference on in Optical Communications and Networks (ICOCN), Chengdu, China, July, 2013.
  11. K. Zhu, M. Crisp, S. He, R. V. Penty, and I. H. White, “An experimental investigation of RoF-enabled MIMO DAS in a non-light-of-sight environment,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Baltimore, USA, May.2011, paper CFH3.
    [Crossref]
  12. K. Zhu, M. Crisp, S. He, R. Penty, and I. White, “MIMO system capacity improvements using radio-over-fibre distributed antenna system technology,” in Proceedings of OFC/NFOEC 2011, Los Angeles, USA, May.2011, paper OTuO2.
    [Crossref]
  13. T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
    [Crossref]
  14. A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects on IEEE 802.11 MAC throughput in wireless LAN over fiber systems,” J. Lightwave Technol. 25(11), 3321–3328 (2007).
    [Crossref]
  15. “802.11n: The Next Generation of Wireless Performance,” Cisco Public document.
  16. Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
    [Crossref]
  17. H. Boelcskei, D. Gesbert, C. B. Papadias, and A. J. van der Veen, Space-time wireless systems: from array processing to MIMO communications (Cambridge University Press, 2006).
  18. M. Sauer and A. Kobyakov, “Fiber-radio antenna feeding for MIMO systems,” in Proceedings of the Optical Fiber Communication & Optoelectronic Exposition & Conference, AOE 2008, Shanghai, China, Oct, 2008.
    [Crossref]
  19. A. Kobyakov, D. Thelen, A. Chamarti, M. Sauer, and J. Winters, “MIMO radio signals over fiber in picocells for increased WLAN coverage,” in Proceedings of OFC/NFOEC 2008, San Diego, USA, Feb, 2008, paper JWA113.
    [Crossref]
  20. G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
    [Crossref]
  21. T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
    [Crossref]
  22. E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
    [Crossref]
  23. P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct.2008.
    [Crossref]
  24. T. Chrysikos, G. Georgopoulos, and S. Kotsopoulos, “Site-specific validation of ITU indoor path loss model at 2.4 GHz,” IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, Jun, 2009.
    [Crossref]
  25. “Coverage or capacity – making the best use of 802.11 n,” Juniper Networks.

2014 (4)

M. J. Koonen and E. Tangdiongga, “Photonic home area networks,” J. Lightwave Technol. 32(4), 591–604 (2014).
[Crossref]

C. Liu, J. Wang, L. Cheng, M. Zhu, and G.-K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

2012 (1)

J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
[Crossref]

2011 (1)

H.-L. Zhu, “Performance comparison between distributed antenna and microcellular systems,” IEEE J. Sel. Areas Comm. 29(6), 1151–1163 (2011).
[Crossref]

2007 (1)

Aighobahi, A. E.

Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
[Crossref]

Assimakopoulos, P.

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct.2008.
[Crossref]

Chang, G.-K.

Cheng, L.

Crisp, M. J.

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

Das, A.

Degli-Esposti, V.

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

Faccin, P.

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

Fan, Y. T.

Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
[Crossref]

Fuschini, F.

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

Gomes, N. J.

J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
[Crossref]

A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects on IEEE 802.11 MAC throughput in wireless LAN over fiber systems,” J. Lightwave Technol. 25(11), 3321–3328 (2007).
[Crossref]

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct.2008.
[Crossref]

Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
[Crossref]

Gordon, G. S. D.

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

Higashino, T.

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
[Crossref]

Komaki, S.

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
[Crossref]

Koonen, M. J.

Liu, C.

Mjeku, M.

Nkansah, A.

A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects on IEEE 802.11 MAC throughput in wireless LAN over fiber systems,” J. Lightwave Technol. 25(11), 3321–3328 (2007).
[Crossref]

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct.2008.
[Crossref]

Penty, R. V.

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

Tangdiongga, E.

Tarlazzi, L.

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

Tsukamoto, K.

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
[Crossref]

Vitucci, E. M.

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

Wang, J.

Wang, J.-Z.

J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
[Crossref]

White, I. H.

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

Xu, K.

Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
[Crossref]

Yamakami, T.

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
[Crossref]

Zhu, H.-L.

J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
[Crossref]

H.-L. Zhu, “Performance comparison between distributed antenna and microcellular systems,” IEEE J. Sel. Areas Comm. 29(6), 1151–1163 (2011).
[Crossref]

Zhu, M.

IEEE J. Sel. Areas Comm. (2)

H.-L. Zhu, “Performance comparison between distributed antenna and microcellular systems,” IEEE J. Sel. Areas Comm. 29(6), 1151–1163 (2011).
[Crossref]

J.-Z. Wang, H.-L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Comm. 30(4), 675–683 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

E. M. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, “Interleaved-MIMO DAS for indoor radio coverage: concept and performance assessment,” IEEE Trans. Antenn. Propag. 62(6), 3299–3309 (2014).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

G. S. D. Gordon, M. J. Crisp, R. V. Penty, and I. H. White, “Experimental evaluation of layout designs for 3×3 MIMO-enabled Radio-Over-Fiber distributed antenna systems,” IEEE Trans. Vehicular Technol. 63(2), 643–653 (2014).
[Crossref]

J. Lightwave Technol. (3)

Other (18)

W. Qing, D. Debbarma, S. H. De Groot, I. Niemegeers, and A. Lo, “Cell switching mechanisms for access point sharing in WLAN over radio-over-fiber systems,” presented at IEEE 20th Symposium on Communications and Vehicular Technology(SCVT), Benelux, Namur, November.2013.

http://standards.ieee.org/getieee802/download/802.11-2012.pdf .

J. Q. Li., Y. T. Fan, H. Chen, K. Xu, Y.T. Dai, F. F. Yin, et al., “Radio-over-fiber-based distributed antenna systems supporting IEEE 802.11N/AC standards,” presented at 12th International Conference on in Optical Communications and Networks (ICOCN), Chengdu, China, July, 2013.

K. Zhu, M. Crisp, S. He, R. V. Penty, and I. H. White, “An experimental investigation of RoF-enabled MIMO DAS in a non-light-of-sight environment,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Baltimore, USA, May.2011, paper CFH3.
[Crossref]

K. Zhu, M. Crisp, S. He, R. Penty, and I. White, “MIMO system capacity improvements using radio-over-fibre distributed antenna system technology,” in Proceedings of OFC/NFOEC 2011, Los Angeles, USA, May.2011, paper OTuO2.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP 2008 Gold Coast, Australia, Oct, 2008.
[Crossref]

T. Alade, H.-L. Zhu, and H. Osman, “”The impact of antenna selection and location on the performance of DAS in a multi-storey building,” presented at IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April.2013, pp. 3213 - 3218.

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage,” in Proceedings of OFC/NFOEC 2007, Anaheim, California, United States, Mar.2007, paper JThA81.
[Crossref]

“802.11n: The Next Generation of Wireless Performance,” Cisco Public document.

Y. T. Fan, A. E. Aighobahi, N. J. Gomes, and K. Xu, “Performance of commercial MIMO access point in distributed antenna system with different fiber lengths,” in Proceedings of MWP/APMP 2014, Sappro, Japan, Oct, 2014.
[Crossref]

H. Boelcskei, D. Gesbert, C. B. Papadias, and A. J. van der Veen, Space-time wireless systems: from array processing to MIMO communications (Cambridge University Press, 2006).

M. Sauer and A. Kobyakov, “Fiber-radio antenna feeding for MIMO systems,” in Proceedings of the Optical Fiber Communication & Optoelectronic Exposition & Conference, AOE 2008, Shanghai, China, Oct, 2008.
[Crossref]

A. Kobyakov, D. Thelen, A. Chamarti, M. Sauer, and J. Winters, “MIMO radio signals over fiber in picocells for increased WLAN coverage,” in Proceedings of OFC/NFOEC 2008, San Diego, USA, Feb, 2008, paper JWA113.
[Crossref]

T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, “An experimental investigation of applying MIMO to RoF ubiquitous antenna system,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct, 2008.
[Crossref]

P. Monteiro, S. Pato, E. López, D. Wake, N. J. Gomes, and A. Gameiro, “Fiber optic networks for distributed radio architectures: FUTON concept and operation,” presented at IEEE Wireless Communications and Networking Conference Workshops (WCNC), Sydney, Australia, April.2010.
[Crossref]

P. Assimakopoulos, A. Nkansah, and N. J. Gomes, “Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths,” in Proceedings of MWP/APMP 2008, Gold Goast, Australia, Oct.2008.
[Crossref]

T. Chrysikos, G. Georgopoulos, and S. Kotsopoulos, “Site-specific validation of ITU indoor path loss model at 2.4 GHz,” IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, Jun, 2009.
[Crossref]

“Coverage or capacity – making the best use of 802.11 n,” Juniper Networks.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 RoF-based Distributed Antenna System.
Fig. 2
Fig. 2 The experiment set-up. PD = Photodetector, AT = Attenuator, V = Voltage, ISO = Isolator, Amp = Amplifier.
Fig. 3
Fig. 3 Experiment layout. The large black dots are the locations of the mobile devices.
Fig. 4
Fig. 4 MIMO-supported downlink throughput with different fiber links (a) Case 1, 25m-25m (b) Case 2,25m-75m (c) Case 3,25m-125m (d) Case 4, 25m-175m.
Fig. 5
Fig. 5 MIMO-supported downlink throughput with the equal fiber link lengths (a) Case 1, 25m-25m (b) Case 5, 125m-125m.
Fig. 6
Fig. 6 Spatial Diversity-supported downlink throughput with different fiber link lengths (a) Case 6, 25m-25m (b) Case 7, 25m-175m.
Fig. 7
Fig. 7 Multiple users downlink throughput comparison for MIMO AP and Diversity AP respectively with the fibre links 25m-25m and 25m-125m.
Fig. 8
Fig. 8 Multiple users uplink throughput comparison for MIMO AP and Diversity AP respectively with the fibre links 25m-25m and 25m-125m.
Fig. 9
Fig. 9 Throughput distribution of the peak-rate area (dark blue), and the crosses correspond to the measurement positions for comparison with Table 3.
Fig. 10
Fig. 10 Throughput distribution of different antenna separations.

Tables (5)

Tables Icon

Table 1 Configurations in Experiment

Tables Icon

Table 2 Configurations in Experiment

Tables Icon

Table 3 Experimental Results (Set 1 and Set 3)

Tables Icon

Table 4 Experimental Results (Set 2 and Set 4)

Tables Icon

Table 5 Experimental Results (Set 6 MIMO and Set 6 Diversity)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L p a t h = 20 × log 10 ( f ) + N × log 10 ( d ) + L f ( n ) 28 d B ,

Metrics