Abstract

Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber’s dielectric function to the index of the incident medium ε″d/n0 is larger than 1.4, then the absorption cross section σa can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σa to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal coupled-mode theory for resonant apertures

Lieven Verslegers, Zongfu Yu, Peter B. Catrysse, and Shanhui Fan
J. Opt. Soc. Am. B 27(10) 1947-1956 (2010)

Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance

Lin Yang, Peiheng Zhou, Taixing Huang, Guoshuai Zhen, Li Zhang, Lei Bi, Xiaolong Weng, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 7(8) 2767-2776 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
    [Crossref]
  2. R. D. Bhat, N. C. Panoiu, S. R. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express 16, 4588–4596 (2008).
    [Crossref] [PubMed]
  3. F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Reviews of Modern Phys. 79, 1267 (2007).
    [Crossref]
  4. J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
    [Crossref] [PubMed]
  5. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047–2061 (2006).
    [Crossref] [PubMed]
  6. S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
    [Crossref]
  7. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011).
    [Crossref] [PubMed]
  8. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008).
    [Crossref] [PubMed]
  9. S. Boutami, R. E. De Lamaestre, and J. Le Perchec, “Photodetector element,” (2012). US Patent 8,125,043.
  10. A. Maradudin and A. Wirgin, “Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light,” Surf. Sci. 162, 980–984 (1985).
    [Crossref]
  11. K. C. Balram, R. M. Audet, and D. A. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. express 21, 10228–10233 (2013).
    [Crossref] [PubMed]
  12. H. Haus, Waves and Fields in Optoelectronics, Solid-state physical electronics series (Prentice-Hall, 1984).
  13. M. Duperron, Ph.D. thesis (2013).
  14. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
    [Crossref]
  15. O. Mata-Mendez and J. Sumaya-Martinez, “Scattering of te-polarized waves by a finite grating:giant resonant enhancement of the electric field within the grooves,” J. Opt. Soc. Am. A 14, 2203–2211 (1997).
    [Crossref]
  16. A. Zuniga-Segundo and O. Mata-Mendez, “Interaction of s-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity,” Phys. Rev. B 46, 536 (1992).
    [Crossref]
  17. J. L. Perchec, “Localisation et exaltation de la lumière dans des structures métalliques sub longueur d’onde,” Ph.D. thesis, Université Joseph Fourier (2007).
  18. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).
  19. T. Senior, “Impedance boundary conditions for imperfectly conducting surfaces,” Appl. Sci. Research, Section B 8, 418–436 (1960).
    [Crossref]
  20. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]
  21. K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
    [Crossref]
  22. K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
    [Crossref]
  23. Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

2013 (1)

2012 (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (2)

2009 (1)

J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

2008 (2)

2007 (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Reviews of Modern Phys. 79, 1267 (2007).
[Crossref]

2006 (1)

2004 (3)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
[Crossref]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

2003 (1)

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

1997 (1)

1992 (1)

A. Zuniga-Segundo and O. Mata-Mendez, “Interaction of s-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity,” Phys. Rev. B 46, 536 (1992).
[Crossref]

1985 (1)

A. Maradudin and A. Wirgin, “Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light,” Surf. Sci. 162, 980–984 (1985).
[Crossref]

1960 (1)

T. Senior, “Impedance boundary conditions for imperfectly conducting surfaces,” Appl. Sci. Research, Section B 8, 418–436 (1960).
[Crossref]

Arend, M.

Arias, J.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

Ashokan, R.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Audet, R. M.

Badano, G.

J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[Crossref] [PubMed]

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Balram, K. C.

Bhat, R. D.

Bonod, N.

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Boutami, S.

S. Boutami, R. E. De Lamaestre, and J. Le Perchec, “Photodetector element,” (2012). US Patent 8,125,043.

Brueck, S. R.

Brun, M.

Carmody, M.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Chang, Y.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

Crouse, D.

De Abajo, F. G.

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Reviews of Modern Phys. 79, 1267 (2007).
[Crossref]

de Lamaestre, R. E.

J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[Crossref] [PubMed]

J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

S. Boutami, R. E. De Lamaestre, and J. Le Perchec, “Photodetector element,” (2012). US Patent 8,125,043.

Desieres, Y.

J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

Duperron, M.

M. Duperron, Ph.D. thesis (2013).

Edwall, D.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Fan, S.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
[Crossref]

Gravrand, O.

Grein, C. H.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Haus, H.

H. Haus, Waves and Fields in Optoelectronics, Solid-state physical electronics series (Prentice-Hall, 1984).

Hazart, J.

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Keshavareddy, P.

Le Perchec, J.

S. Boutami, R. E. De Lamaestre, and J. Le Perchec, “Photodetector element,” (2012). US Patent 8,125,043.

Lee, D.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Liao, D.

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Maradudin, A.

A. Maradudin and A. Wirgin, “Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light,” Surf. Sci. 162, 980–984 (1985).
[Crossref]

Mata-Mendez, O.

O. Mata-Mendez and J. Sumaya-Martinez, “Scattering of te-polarized waves by a finite grating:giant resonant enhancement of the electric field within the grooves,” J. Opt. Soc. Am. A 14, 2203–2211 (1997).
[Crossref]

A. Zuniga-Segundo and O. Mata-Mendez, “Interaction of s-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity,” Phys. Rev. B 46, 536 (1992).
[Crossref]

Miller, D. A.

Moazzami, K.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Nathan, V.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Nicoletti, S.

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Osgood, R. M.

Panoiu, N. C.

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

Pelouard, J.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

Perchec, J. L.

J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[Crossref] [PubMed]

J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

J. L. Perchec, “Localisation et exaltation de la lumière dans des structures métalliques sub longueur d’onde,” Ph.D. thesis, Université Joseph Fourier (2007).

Phillips, J.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Piquette, E.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

Popov, E.

Raman, A.

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Rochat, N.

Senior, T.

T. Senior, “Impedance boundary conditions for imperfectly conducting surfaces,” Appl. Sci. Research, Section B 8, 418–436 (1960).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
[Crossref]

Sumaya-Martinez, J.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
[Crossref]

Wirgin, A.

A. Maradudin and A. Wirgin, “Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light,” Surf. Sci. 162, 980–984 (1985).
[Crossref]

Yeh, P.

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).

Yu, Z.

Zandian, M.

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

Zhao, J.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Zhou, Y. D.

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

Zou, J.

Zuniga-Segundo, A.

A. Zuniga-Segundo and O. Mata-Mendez, “Interaction of s-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity,” Phys. Rev. B 46, 536 (1992).
[Crossref]

Appl. Phys. Lett. (2)

J. L. Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett. 94, 181104 (2009).
[Crossref]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett. 85, 194–196 (2004).
[Crossref]

Appl. Sci. Research, Section B (1)

T. Senior, “Impedance boundary conditions for imperfectly conducting surfaces,” Appl. Sci. Research, Section B 8, 418–436 (1960).
[Crossref]

IEEE J. of Quantum Electronics (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. of Quantum Electronics 40, 1511–1518 (2004).
[Crossref]

J. Electron. Mater. (2)

K. Moazzami, J. Phillips, D. Lee, D. Edwall, M. Carmody, E. Piquette, M. Zandian, and J. Arias, “Optical-absorption model for molecular-beam epitaxy hgcdte and application to infrared detector photoresponse,” J. Electron. Mater. 33, 701–708 (2004). 10.1007/s11664-004-0069-y.
[Crossref]

K. Moazzami, D. Liao, J. Phillips, D. Lee, M. Carmody, M. Zandian, and D. Edwall, “Optical absorption properties of hgcdte epilayers with uniform composition,” J. Electron. Mater. 32, 646–650 (2003). 10.1007/s11664-003-0046-x.
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

A. Zuniga-Segundo and O. Mata-Mendez, “Interaction of s-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity,” Phys. Rev. B 46, 536 (1992).
[Crossref]

Reviews of Modern Phys. (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Reviews of Modern Phys. 79, 1267 (2007).
[Crossref]

Surf. Sci. (1)

A. Maradudin and A. Wirgin, “Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light,” Surf. Sci. 162, 980–984 (1985).
[Crossref]

Other (6)

Y. Chang, G. Badano, J. Zhao, Y. D. Zhou, R. Ashokan, C. H. Grein, and V. Nathan, “Near-bandgap infrared absorption properties of HgCdTe, band,” J. Electron. Mater.33, 709–713 (2004). Proceedings of the Workshop on the Physics and Chemistry of II–VI MaterialsSEP 17–19, 2003New Orleans, LA, USA.

S. Boutami, R. E. De Lamaestre, and J. Le Perchec, “Photodetector element,” (2012). US Patent 8,125,043.

J. L. Perchec, “Localisation et exaltation de la lumière dans des structures métalliques sub longueur d’onde,” Ph.D. thesis, Université Joseph Fourier (2007).

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, 2005).

H. Haus, Waves and Fields in Optoelectronics, Solid-state physical electronics series (Prentice-Hall, 1984).

M. Duperron, Ph.D. thesis (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic view of a cavity of width w and height h embedded in metal.
Fig. 2
Fig. 2 G(n0kw) as a function of kw for different values of n0. The dashed is line is the extinction coefficient of the evanescent field of an asymmetric guided mode in TE polarization.
Fig. 3
Fig. 3 Typical electric field Ez for nd=3.4 + 0.2 i and n0 = 1.
Fig. 4
Fig. 4 Field amplitude |A1 sin(μh)| for a cavity filled with an nd = 3.4 + 0.2i dielectric when the incident medium is air (a) or n0 = 3.4 (b). The solutions of Eq. (9) are also shown (the dashed line).
Fig. 5
Fig. 5 (a) Absorption cross section normalized to the cavity width w for a cavity filled with an nd = 3.4 + 0.2i dielectric when the incident medium is air. (b) The actual absorption cross section σa for λ = 4μm.
Fig. 6
Fig. 6 (a) Quantum efficiency for an array of cavities filled with a dielectric of nd = 3.4 + 0.2i for an incident wavelength λ = 4 μm. (b) Absorption cross section for a single isolated cavity (dashed line) compared to that of an arrayed cavity (the continuous lines).
Fig. 7
Fig. 7 Critical coupling condition for an absorber that has ε″d = 1.4, representative of most absorbing semiconductors. n0 is the index of the incident medium. The dashed lines refer to an array of cavities of period n0d < λ.
Fig. 8
Fig. 8 Dissipative losses as a function of wavelength, for nd = 3.4 + 0.2i. The height and width of the cavity are optimized at each wavelength to maximise confinement.
Fig. 9
Fig. 9 (a) Comparison of the absorption cross section of a single cavity, calculated using Eq. (10) (the continuous lines) and using FDTD (the dashed line), assuming a PEC. Periodic system with d = 4μm. (b) Same plot, but this time the metal is gold. Notice the wavelength shift. Metallic loss is very small in this range of wavelengths.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

E z = m A m cos ( m π x / w ) sin [ μ m ( h + y ) ] ( y < 0 )
E z = e i k y + R ( Q ) e i Q x + i q y d Q ( y > 0 )
f ( Q ) = w cos ( w Q / 2 ) w 2 Q 2 π 2
E z = sin ( k y ) + A 1 sin ( μ h ) f ( Q ) e i Q x + i q y d Q
A 1 = 8 i n 0 k w 4 π 2 i sin ( μ h ) G ( n 0 k w ) μ w π cos ( μ h )
G ( n 0 k w ) = + f ( Q ) 2 q ( Q ) d Q = + cos 2 t / 2 t 2 π 2 ( n 0 k w ) 2 t 2 d t
A 1 ( h / w , k w ) = 8 i n 0 × k w π [ 4 π i G ( n 0 k w ) sin [ u h w ] u cos [ u h w ] ]
| A 1 ( h / w , k w ) | = 8 n 0 k w 16 π 4 sin 2 ( u h / w ) ( G ) 2 ( 4 π 2 sin ( u h / w ) ( G ) + π u cos ( u h / w ) ) 2
y w u = N π arctan u 4 π ( G ( n 0 k w ) )
σ a = | A 1 | 2 k w ε d n 0 ( μ ) sinh [ 2 h ( μ ) ] ( μ ) sin [ 2 h ( μ ) ] 8 ( μ ) ( μ )
σ a | A 1 | 2 k w h ε d 4 n 0 = w | A 1 | 2 ( k w ) ( h / w ) ε d 4 n 0
A 1 = A ( ω ω 0 ) i γ
[ ( ω ω 0 ) 4 π i c G ( ω 0 ) ε d h k w + 4 π i c ( G / ω ) ]
γ rad = 4 π c ε d h k w ( G ( ω 0 ) )
σ s = λ n 0 | A 1 sin ( μ h ) | 2 ( G ( n 0 k w ) )
W 1 = ε 0 | A 1 | 2 2 μ h ( ε d k 2 w 2 ) π 2 sin ( 2 μ h ) 16 μ w k 2
W 1 | A 1 | 2 ε 0 ε d w h 8
γ rad P rad 2 W 1 = 4 π c ε d h k w ( G )
γ abs P abs 2 W 1 = 1 2 ω 0 ε d ε d
E z ( x , y ) = n = + A n sin [ μ ( h + y ) ] cos [ ( x + n d ) π w ] Π w ( x + n d )
R ( Q ) = δ ( Q ) + n = + A 1 sin ( μ h ) 2 π d δ ( Q 2 π n d ) f ( Q )
G ( n 0 , k , w , d ) = 2 π d n = + n 0 2 k 2 ( 2 π n d ) 2 f ( 2 π n d ) 2
A 1 = 8 i k n 0 w 4 π 2 i sin ( μ h + α ) G ( n 0 k w ) μ w π cos ( μ h + α )
γ met α c 2 ( 32 π ( h / w ) ( G 2 ) + 8 ( G ) ) h w ε d ω 0
A 1 cos ( π x / w ) sin ( μ h ) e i Q x d x = ( e i Q x + R ( Q ) e i ( Q Q ) x ) d Q
2 π f ( Q ) A 1 sin ( μ h ) = 2 π δ ( Q ) + 2 π δ ( Q Q ) R ( Q ) d Q
w / 2 w / 2 cos ( π x w ) ( 2 i k + i q A 1 sin ( μ h ) e i Q x d Q ) d x = = A 1 μ cos ( μ h ) w / 2 w / 2 cos 2 ( π x w ) d x
E n = 2 A 1 sin ( μ h ) k n 0 f ( Q ) e i Q x + i q y d Q

Metrics