Abstract

We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of Rayleigh nanoparticlesensing using a whispering-gallery-mode resonator

Yuecheng Shen and Jung-Tsung Shen
J. Opt. Soc. Am. B 29(10) 2897-2900 (2012)

Whispering gallery mode micro resonators for multi-parameter sensing applications

Arun Kumar Mallik, Gerald Farrell, Manjusha Ramakrishnan, Vishnu Kavungal, Dejun Liu, Qiang Wu, and Yuliya Semenova
Opt. Express 26(24) 31829-31838 (2018)

Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal

Aseel Mahmood, Vishnu Kavungal, Sudad S. Ahmed, Peter Kopcansky, Vlasta Zavisova, Gerald Farrell, and Yuliya Semenova
Opt. Express 25(11) 12195-12202 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  2. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  3. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
    [Crossref]
  4. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
    [Crossref] [PubMed]
  5. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [Crossref] [PubMed]
  6. M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  8. J. T. Gohring and X. Fan, “Label free detection of CD4+ and CD8+ T cells using the optofluidic ring resonator,” Sensors (Basel) 10(6), 5798–5808 (2010).
    [Crossref] [PubMed]
  9. J. M. Antonini, “Health effects of welding,” Crit. Rev. Toxicol. 33(1), 61–103 (2003).
    [Crossref] [PubMed]
  10. M. R. Flynn and P. Susi, “Neurological risks associated with manganese exposure from welding operations--a literature review,” Int. J. Hyg. Environ. Health 212(5), 459–469 (2009).
    [Crossref] [PubMed]
  11. L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
    [Crossref] [PubMed]
  12. C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
    [Crossref] [PubMed]
  13. K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).
  14. D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
    [Crossref] [PubMed]
  15. A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
    [Crossref]
  16. T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
    [Crossref] [PubMed]
  17. N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
    [Crossref]
  18. A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
    [Crossref] [PubMed]
  19. I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, J. R. Heflin, L. Yang, and Y. Xu, “High quality factor silica microspheres functionalized with self-assembled nanomaterials,” Opt. Express 21(18), 20601–20610 (2013).
    [Crossref] [PubMed]
  20. A. Ishimaru, Wave propagation and scattering in random media (Wiley-IEEE, 1999).
  21. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
    [Crossref] [PubMed]
  22. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  23. V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
    [Crossref]
  24. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
    [Crossref] [PubMed]
  25. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  26. M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys. 15(8), 083006 (2013).
    [Crossref]
  27. I. Teraoka and S. Arnold, “Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry,” J. Opt. Soc. Am. B 26, 1321–1329 (2009).
  28. K. R. Hiremath and V. N. Astratov, “Perturbations of whispering gallery modes by nanoparticles embedded in microcavities,” Opt. Express 16(8), 5421–5426 (2008).
    [Crossref] [PubMed]
  29. L. Chantada, N. I. Nikolaev, A. L. Ivanov, P. Borri, and W. Langbein, “Optical resonances in microcylinders: response to perturbations for biosensing,” J. Opt. Soc. Am. B 25(8), 1312–1321 (2008).
    [Crossref]
  30. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  31. G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
    [Crossref]
  32. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
    [Crossref] [PubMed]

2014 (1)

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

2013 (2)

2012 (1)

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

2011 (6)

L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
[Crossref] [PubMed]

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

2010 (5)

J. T. Gohring and X. Fan, “Label free detection of CD4+ and CD8+ T cells using the optofluidic ring resonator,” Sensors (Basel) 10(6), 5798–5808 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
[Crossref] [PubMed]

M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (2)

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

2006 (2)

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref] [PubMed]

2004 (1)

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

2003 (2)

2000 (1)

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

1997 (1)

1996 (1)

1986 (1)

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[Crossref] [PubMed]

Akkermans, E.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[Crossref] [PubMed]

Andres, M. V.

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

Andrés, M. V.

Anthony, T. R.

L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
[Crossref] [PubMed]

Antonini, J. M.

J. M. Antonini, “Health effects of welding,” Crit. Rev. Toxicol. 33(1), 61–103 (2003).
[Crossref] [PubMed]

Armani, A. M.

Arnold, S.

Asbach, C.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Ashry, I.

Astratov, V. N.

Badding, J. V.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Bekshaev, A.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Birks, T. A.

Bo, L.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Boleininger, A.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

Boriskina, S. V.

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

Borri, P.

Brenneman, K. A.

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Buccellato, M. A.

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Cena, L. G.

L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
[Crossref] [PubMed]

Chantada, L.

Chen, S.-C.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Cheng, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Cheng, Y.-S.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Cheung, G.

Cordoba, M. A. S.

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

Costa, E. R.

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Daengngam, C.

Dale, P. S.

Demirel, M. C.

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

Diez, A.

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

Díez, A.

Dorman, D. C.

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Dulashko, Y.

Dye, J. A.

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

Ellis, F.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Ennan, A.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

J. T. Gohring and X. Fan, “Label free detection of CD4+ and CD8+ T cells using the optofluidic ring resonator,” Sensors (Basel) 10(6), 5798–5808 (2010).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Farrell, G.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Fissan, H.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Flynn, M. R.

M. R. Flynn and P. Susi, “Neurological risks associated with manganese exposure from welding operations--a literature review,” Int. J. Hyg. Environ. Health 212(5), 459–469 (2009).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys. 15(8), 083006 (2013).
[Crossref]

Gimeno, B.

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
[Crossref] [PubMed]

Göhler, D.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Gohring, J. T.

J. T. Gohring and X. Fan, “Label free detection of CD4+ and CD8+ T cells using the optofluidic ring resonator,” Sensors (Basel) 10(6), 5798–5808 (2010).
[Crossref] [PubMed]

Gorodetsky, M. L.

Gross, E. A.

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Hami, S.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Healy, N.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Heflin, J. R.

Hiremath, K. R.

Holler, S.

Horak, P.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Hung, S.-M.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Ilchenko, V. S.

Ivanov, A. L.

Jacques, F.

Jao, C.-Y.

Kandas, I.

Kavungal, V.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Khoshsima, M.

Kim, J.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Kiro, S.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Knight, J. C.

Kominsky, D.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Kuhlbusch, T. A.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Lake, T.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

Langbein, W.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Liu, C.-N.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Maynard, R.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[Crossref] [PubMed]

Nikolaev, N. I.

Oprya, M.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Ozdemir, S. K.

I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, J. R. Heflin, L. Yang, and Y. Xu, “High quality factor silica microspheres functionalized with self-assembled nanomaterials,” Opt. Express 21(18), 20601–20610 (2013).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Peacock, A. C.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Peng, B.

Peters, T. M.

L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
[Crossref] [PubMed]

Pickrell, G.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Potgieter-Vermaak, S. S.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Robertson, I. D.

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

Robinson, H. D.

Safaai-Jazi, A.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Savchenkov, A. A.

Sazio, P. J. A.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Semenova, Y.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Sparks, J. R.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Spolnik, Z.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Stefaniak, E. A.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Stintz, M.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Stolen, R.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Struve, M. F.

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

Sumetsky, M.

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Susi, P.

M. R. Flynn and P. Susi, “Neurological risks associated with manganese exposure from welding operations--a literature review,” Int. J. Hyg. Environ. Health 212(5), 459–469 (2009).
[Crossref] [PubMed]

Suter, J. D.

Teng, M.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Teraoka, I.

Tsai, C.-J.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Uang, S.-N.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Vahala, K. J.

Vallance, C.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

Van Grieken, R.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Vollmer, F.

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys. 15(8), 083006 (2013).
[Crossref]

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Vukovic, N.

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Wang, A.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

White, I. M.

Wolf, P. E.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[Crossref] [PubMed]

Wong, B. A.

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Worobiec, A.

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

Wu, Q.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xu, Y.

Yang, L.

I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, J. R. Heflin, L. Yang, and Y. Xu, “High quality factor silica microspheres functionalized with self-assembled nanomaterials,” Opt. Express 21(18), 20601–20610 (2013).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yu, C.

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Zamora, V.

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett. 34(7), 1039–1041 (2009).
[Crossref] [PubMed]

Zhang, B.

Zhou, Y.

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

Zhu, H.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).

N. Vukovic, N. Healy, P. Horak, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Ultra-smooth microcylindrical resonators fabricated from the silicon optical fiber platform,” Appl. Phys. Lett. 99(3), 031117 (2011).
[Crossref]

Crit. Rev. Toxicol. (1)

J. M. Antonini, “Health effects of welding,” Crit. Rev. Toxicol. 33(1), 61–103 (2003).
[Crossref] [PubMed]

Environ. Sci. Technol. (2)

L. G. Cena, T. R. Anthony, and T. M. Peters, “A personal nanoparticle respiratory deposition (NRD) sampler,” Environ. Sci. Technol. 45(15), 6483–6490 (2011).
[Crossref] [PubMed]

C.-J. Tsai, C.-N. Liu, S.-M. Hung, S.-C. Chen, S.-N. Uang, Y.-S. Cheng, and Y. Zhou, “Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces,” Environ. Sci. Technol. 46(8), 4546–4552 (2012).
[Crossref] [PubMed]

IEEE Photonic. Tech. L. (1)

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photonic. Tech. L. 16(2), 491–493 (2004).
[Crossref]

Int. J. Hyg. Environ. Health (1)

M. R. Flynn and P. Susi, “Neurological risks associated with manganese exposure from welding operations--a literature review,” Int. J. Hyg. Environ. Health 212(5), 459–469 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Cheng, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

New J. Phys. (1)

M. R. Foreman and F. Vollmer, “Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles,” New J. Phys. 15(8), 083006 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Part. Fibre Toxicol. (1)

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, and M. Stintz, “Nanoparticle exposure at nanotechnology workplaces: a review,” Part. Fibre Toxicol. 8(1), 22 (2011).
[Crossref] [PubMed]

Phot. Nano. Fund. Appl. (1)

V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano. Fund. Appl. 9(2), 149–158 (2011).
[Crossref]

Phys. Rev. Lett. (1)

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[Crossref] [PubMed]

Proc. SPIE (1)

V. Kavungal, L. Bo, Q. Wu, M. Teng, C. Yu, G. Farrell, and Y. Semenova, “Study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper,” Proc. SPIE 9157, 91578N (2014).
[Crossref]

Sensors (Basel) (2)

J. T. Gohring and X. Fan, “Label free detection of CD4+ and CD8+ T cells using the optofluidic ring resonator,” Sensors (Basel) 10(6), 5798–5808 (2010).
[Crossref] [PubMed]

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel) 10(3), 1765–1781 (2010).
[Crossref] [PubMed]

Toxicol. Sci. (1)

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicol. Sci. 92(1), 219–227 (2006).
[Crossref] [PubMed]

XRay Spectrom. (1)

A. Worobiec, E. A. Stefaniak, S. Kiro, M. Oprya, A. Bekshaev, Z. Spolnik, S. S. Potgieter-Vermaak, A. Ennan, and R. Van Grieken, “Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods,” XRay Spectrom. 36(5), 328–335 (2007).
[Crossref]

YTAAP (1)

K. A. Brenneman, B. A. Wong, M. A. Buccellato, E. R. Costa, E. A. Gross, and D. C. Dorman, “Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model,” YTAAP 169, 238–248 (2000).

Other (1)

A. Ishimaru, Wave propagation and scattering in random media (Wiley-IEEE, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Six major steps in WGM-based aerosol sensing: (a) clean fiber measurement, (b) welding aerosol deposition, (c) characterization of aerosol-covered sample, (d) SEM analysis, (e) aerosol removal, (f) control measurement of the re-cleaned fiber sample.
Fig. 2
Fig. 2 (a) Illustration of the welding aerosol deposition system. (Insets: welding chamber and arc welder at the top-right and the bottom-right corner, respectively). The fiber resonator is placed in a V-groove such that only the outer half of the resonator surface is exposed to the flow of welding aerosols. The surface of the inner half remains clean and is used for fiber taper coupling. (b) A representative SEM image of a sample covered with aerosols. The side view image shows both the dirty outer half and the clean inner half surface.
Fig. 3
Fig. 3 (a) Setup for WGM transmission measurements. OSA: optical spectrum analyzer; PD: photodetector; PC: polarization controller. (b) Microscope image of the fiber taper and the resonator near the coupling location. (c) Three transmission spectra measured at three different alignment angles θ.
Fig. 4
Fig. 4 (a) A schematic illustration of taper-resonator coupling is shown in the left panel. The right panel, which corresponds to the region in the dashed square in the left panel, illustrates five taper-resonator coupling locations considered in our experiment. (b) Transmission spectra at the five coupling locations in (a). Through Lorentzian fitting, we find that the center of the resonance dip for the desired WGM is located at 1522.7869, 1522.7817, and 1522.7826 nm for the 1st, 2nd, and 3rd location, respectively.
Fig. 5
Fig. 5 (a) The procedure for characterizing 29 clean resonator samples, all taken from a ~2-meter-long SMF-28 fiber spool. (b) Representative transmission spectra of four samples that are ~21, 70, 126, and 147 cm away from the 1st sample, respectively. (c) The distribution of WGM wavelengths and Q factors of the 1st sample, measured at 20 random locations within the end-side ~1 cm long segment. (d) WGM resonance wavelength and (e) Q factor of the 29 clean resonators.
Fig. 6
Fig. 6 (a) Two WGM transmission spectra measured using a clean resonator (blue line) and the same resonator but covered with aerosols (red line). (b) A magnified view of the transmission spectra near 1522.3 nm. The control sample transmission spectra is added as the green line, with a slight vertical shift for easier visualization. (c) The distribution of the WGM wavelengths and Q factors of the clean (blue circles), the aerosol-covered (red triangles), and the control sample (green squares).
Fig. 7
Fig. 7 (a) A representative SEM image of sample #10. A magnified view of the yellow square in (a) is shown in (b). (c) is the image after applying the edge-detection algorithm. (d) shows the statistical distribution of aerosols with difference sizes. Aerosols with effective diameter less than 50 nm are not considered, since it is difficult to reliably identify smaller aerosols. Results obtained using three different images (#5, #6, and #9) are individually shown. The average and the standard deviation obtained using all 10 SEM images are also given as the red bars.
Fig. 8
Fig. 8 (a) The average WGM resonance shift of the clean (blue circles), the aerosol-covered (red triangles), and the control sample (green squares) versus average sample aerosol density. (b) The average Q factor of the clean (blue circles), the aerosol-covered (red triangles), and the control sample (green squares) versus average aerosol density. (c) The average Q factor versus the average resonance shift of all 29 aerosol-covered samples.
Fig. 9
Fig. 9 The SEM image (a.1), the WGM transmission spectra (a.2), and the WGM resonance shift versus Q factor (a.3) for the sample with D ¯ aerosol =15.2%. In (a.2), the transmission spectra of the clean, the aerosol-covered, and the control samples are represented as the blue, the red, and the green lines. The control sample result is slight shifted vertically. (a.3) shows the individually measured resonance shifts and Q factors of the clean (blue circles), the aerosol-covered (red triangles), and the control (green squares) sample. Similar data sets for the sample with D ¯ aerosol =52.3% is shown in (b). (c) tabulates the WGM properties of the two sets of samples shown in (a) and (b).
Fig. 10
Fig. 10 (a) The formation of a circulating WGM by placing a fiber taper in close proximity to the cylindrical resonator, as suggested in [32]. (b) Optical scattering by the adsorbed NPs can effectively increase the total cavity path of the cylindrical resonator, thus producing the red shift in WGM resonance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ ¯ res aerosol =Δ λ res max [ 1exp( D ¯ aerosol / D thresh aerosol ) ]
δω /ω i=1 N α i | E WGM ( r i ) | 2 / ( 2 ε res | E WGM ( r ) | 2 dV )

Metrics