Abstract

The time-resolved acousto-optic technique demonstrated recently to be a very useful method for the analysis of fiber axial non-uniformities, able to detect variations of fiber diameter in the nanometric scale with a spatial resolution of few cm. An edge interrogation approach is proposed to improve further the performance of this technique. The detection of subnanometer fiber diameter changes or sub-ppm changes of the core refractive index is demonstrated.’

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved acousto-optic interaction in single-mode optical fibers: characterization of axial nonuniformities at the nanometer scale

E. P. Alcusa-Sáez, A. Díez, M. González-Herráez, and M. V. Andrés
Opt. Lett. 39(6) 1437-1440 (2014)

Sidelobe suppression in all-fiber acousto-optic tunable filter using torsional acoustic wave

Kwang Jo Lee, In-Kag Hwang, Hyun Chul Park, and Byoung Yoon Kim
Opt. Express 18(12) 12059-12064 (2010)

Axial strain dependence of all-fiber acousto-optic tunable filters

Kwang Jo Lee, In-Kag Hwang, Hyun Chul Park, and Byoung Yoon Kim
Opt. Express 17(4) 2348-2357 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Brennan, “Dispersion management with long-length fiber Bragg gratings,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FC1.
  2. D. K. Serkland and P. Kumar, “Tunable fiber-optic parametric oscillator,” Opt. Lett. 24(2), 92–94 (1999).
    [Crossref] [PubMed]
  3. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
    [Crossref] [PubMed]
  4. J. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [Crossref] [PubMed]
  5. P. Di Vita and U. Rossi, “Backscattering measurements in optical fibres: separation of power decay from imperfection contribution,” Electron. Lett. 15(15), 467–469 (1979).
    [Crossref]
  6. K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
    [Crossref]
  7. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [Crossref] [PubMed]
  8. E. P. Alcusa-Sáez, A. Díez, M. González-Herráez, and M. V. Andrés, “Time-resolved acousto-optic interaction in single-mode optical fibers: Characterization of axial nonuniformities at the nanometer scale,” Opt. Lett. 39(6), 1437–1440 (2014).
    [Crossref] [PubMed]
  9. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [Crossref] [PubMed]
  10. S. D. Lim, K. J. Park, S. Eom, J. M. Jeong, B. Y. Kim, and S. B. Lee, “Ultrawidely tunable single-mode fiber acousto-optic filter,” Opt. Lett. 36(7), 1101–1103 (2011).
    [Crossref] [PubMed]

2014 (1)

2011 (1)

2010 (1)

2005 (1)

2002 (1)

1999 (1)

1997 (2)

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[Crossref]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
[Crossref] [PubMed]

1979 (1)

P. Di Vita and U. Rossi, “Backscattering measurements in optical fibres: separation of power decay from imperfection contribution,” Electron. Lett. 15(15), 467–469 (1979).
[Crossref]

Alcusa-Sáez, E. P.

Andrés, M. V.

Di Vita, P.

P. Di Vita and U. Rossi, “Backscattering measurements in optical fibres: separation of power decay from imperfection contribution,” Electron. Lett. 15(15), 467–469 (1979).
[Crossref]

Díez, A.

Dulashko, Y.

Duligall, J.

Eom, S.

Fiorentino, M.

Fulconis, J.

González-Herráez, M.

Jeong, J. M.

Kim, B. Y.

Kim, H. S.

Kumar, P.

Kwang, I. K.

Lee, S. B.

Lim, S. D.

Nakajima, K.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[Crossref]

Ohashi, M.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[Crossref]

Park, K. J.

Rarity, J.

Rossi, U.

P. Di Vita and U. Rossi, “Backscattering measurements in optical fibres: separation of power decay from imperfection contribution,” Electron. Lett. 15(15), 467–469 (1979).
[Crossref]

Russell, P. St. J.

Serkland, D. K.

Sharping, J. E.

Sumetsky, M.

Tateda, M.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[Crossref]

Wadsworth, W. J.

Windeler, R. S.

Yun, S. H.

Electron. Lett. (1)

P. Di Vita and U. Rossi, “Backscattering measurements in optical fibres: separation of power decay from imperfection contribution,” Electron. Lett. 15(15), 467–469 (1979).
[Crossref]

J. Lightwave Technol. (1)

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Other (1)

J. F. Brennan, “Dispersion management with long-length fiber Bragg gratings,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FC1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Transmittance, (b) first, and (c) second derivative of transmittance with respect to detuning, as a function of detuning. Leff = 10 cm, κ = 15.7 m−1 (black), κ = 11 m−1 (red), κ = 7 m−1 (blue). Vertical lines indicates δ = 0 and δm.
Fig. 2
Fig. 2 (a) Change of transmittance with respect to transmittance at δ0 = 0 (red line) and at δ0 = δm (black line) caused by a small change of detuning. (b) Relative error that results when the transmittance at a given δ near δm is approximated by Eq. (5).
Fig. 3
Fig. 3 (a) Transmittance as a function of time/position for different optical wavelengths. Grey lines are the transmittance calculated with Eq. (1) at δ = 0 and at δ = 15.65 m−1. (b) Transmittance fluctuations, and (c) detuning fluctuations along the fiber. (d) Transmittance as a function of fiber position in a segment of Nufern SM-YSF-HI fiber. Grey line is the transmittance calculated with Eq. (1) and δ = 15.4 m−1. (e) Fluctuation of detuning and the corresponding radius fluctuation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T=1 κ 2 κ 2 + δ 2 Sin 2 [ L eff κ 2 + δ 2 ]
δ=π( Δ n m λ 1 Λ )
T(δ)T( δ 0 )+ ( T δ ) δ 0 (δ δ 0 )+ 1 2 ( 2 T δ 2 ) δ 0 (δ δ 0 ) 2 +...
T(δ)T(δ=0)+ 1 2 ( 2 T δ 2 ) δ=0 δ 2
T(δ)T( δ m )+ ( T δ ) δ m ( δ δ m )
κ= κ 0 e αz
T δ | δ m = ( δ λ ) λ m 1 T λ | λ m
( δ δ 0 ) δ a | a 0 ( a a 0 )

Metrics