Abstract

Bessel beams have been extensive studied to date but are always created over a finite region inside the laboratory. Means to overcome this consider multi-element refractive designs to create beams that have a longitudinal dependent cone angle, thereby allowing for a far greater quasi non–diffracting propagation region. Here we outline a generalized approach for the creation of shape-invariant Bessel-like beams with a single phase-only element, and demonstrate it experimentally with a phase-only spatial light modulator. Our experimental results are in excellent agreement with theory, suggesting an easy-to-implement approach for long range, shape-invariant Bessel-like beams.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bessel–like beams with z–dependent cone angles

Vladimir Belyi, Andrew Forbes, Nikolai Kazak, Nikolai Khilo, and P. Ropot
Opt. Express 18(3) 1966-1973 (2010)

Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams

Nokwazi Mphuthi, Lucas Gailele, Igor Litvin, Angela Dudley, Roelf Botha, and Andrew Forbes
Appl. Opt. 58(16) 4258-4264 (2019)

Recording Bessel-like beam shapes generated by plasmonics lens

C. K. Chang, Y. Y. Yu, M. W. Lai, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee
Opt. Express 17(16) 13946-13952 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. B 4(4), 651 (1987).
    [Crossref]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  4. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
    [Crossref]
  5. A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
    [Crossref]
  6. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: Analytical description and experiment,” J. Opt. Soc. Am. A 18(8), 1986–1992 (2001).
    [Crossref] [PubMed]
  7. J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
    [Crossref]
  8. I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281(9), 2385–2392 (2008).
    [Crossref]
  9. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-order Bessel beams,” Opt. Express 17(26), 23389–23395 (2009).
    [Crossref] [PubMed]
  10. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).
    [Crossref] [PubMed]
  11. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
    [Crossref]
  12. R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
    [Crossref]
  13. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28(22), 2183–2185 (2003).
    [Crossref] [PubMed]
  14. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27(19), 3959–3962 (1988).
    [Crossref] [PubMed]
  15. M. Bock, S. K. Das, and R. Grunwald, “Programmable ultrashort-pulsed flying images,” Opt. Express 17(9), 7465–7478 (2009).
    [Crossref] [PubMed]
  16. M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
    [Crossref] [PubMed]
  17. M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
    [Crossref] [PubMed]
  18. H. C. Ramrez, R. R. Alarcon, F. J. Morelos, P. A. Q. Su, J. C. G. Vega, and A. B. U’Ren, “Observation of non-diffracting behavior at the single-photon level,” Opt. Express 20(28), 29761–29768 (2012).
  19. A. Aiello and G. S. Agarwal, “Wave-optics description of self-healing mechanism in Bessel beams,” Opt. Lett. 39(24), 6819–6822 (2014).
    [Crossref] [PubMed]
  20. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36(16), 3762–3768 (1997).
    [Crossref] [PubMed]
  21. V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
    [Crossref] [PubMed]
  22. I. A. Litvin, N. A. Khilo, A. Forbes, and V. N. Belyi, “Intra-cavity generation of Bessel-like beams with longitudinally dependent cone angles,” Opt. Express 18(5), 4701–4708 (2010).
    [Crossref] [PubMed]
  23. Y. Ismail, N. Khilo, V. Belyi, and A. Forbes, “Shape invariant higher-order Bessel-like beams carrying orbital angular momentum,” J. Opt. 14(8), 085703 (2012).
    [Crossref]

2014 (2)

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

A. Aiello and G. S. Agarwal, “Wave-optics description of self-healing mechanism in Bessel beams,” Opt. Lett. 39(24), 6819–6822 (2014).
[Crossref] [PubMed]

2013 (1)

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

2012 (3)

2011 (1)

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

2010 (3)

2009 (2)

2008 (1)

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281(9), 2385–2392 (2008).
[Crossref]

2005 (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

2003 (1)

2001 (2)

J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
[Crossref]

A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: Analytical description and experiment,” J. Opt. Soc. Am. A 18(8), 1986–1992 (2001).
[Crossref] [PubMed]

1997 (1)

1996 (1)

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

1989 (1)

1988 (1)

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. B 4(4), 651 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Agarwal, G. S.

Agnew, M.

Aiello, A.

Alarcon, R. R.

Aruga, T.

Belyi, V.

Y. Ismail, N. Khilo, V. Belyi, and A. Forbes, “Shape invariant higher-order Bessel-like beams carrying orbital angular momentum,” J. Opt. 14(8), 085703 (2012).
[Crossref]

V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
[Crossref] [PubMed]

Belyi, V. N.

Bock, M.

Bowman, R.

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

Boyd, R. W.

Chattrapiban, N.

Chavez-Cerda, S.

J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
[Crossref]

Cofield, D.

Das, S. K.

Dholakia, K.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Di Tramapani, P.

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

Dudley, A.

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-order Bessel beams,” Opt. Express 17(26), 23389–23395 (2009).
[Crossref] [PubMed]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. B 4(4), 651 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Forbes, A.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Y. Ismail, N. Khilo, V. Belyi, and A. Forbes, “Shape invariant higher-order Bessel-like beams carrying orbital angular momentum,” J. Opt. 14(8), 085703 (2012).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
[Crossref] [PubMed]

V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel-like beams with z-dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010).
[Crossref] [PubMed]

I. A. Litvin, N. A. Khilo, A. Forbes, and V. N. Belyi, “Intra-cavity generation of Bessel-like beams with longitudinally dependent cone angles,” Opt. Express 18(5), 4701–4708 (2010).
[Crossref] [PubMed]

R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-order Bessel beams,” Opt. Express 17(26), 23389–23395 (2009).
[Crossref] [PubMed]

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281(9), 2385–2392 (2008).
[Crossref]

Friberg, A. T.

Grunwald, R.

Gunn-Moore, F.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
[Crossref]

Hill, W. T.

Ismail, Y.

Y. Ismail, N. Khilo, V. Belyi, and A. Forbes, “Shape invariant higher-order Bessel-like beams carrying orbital angular momentum,” J. Opt. 14(8), 085703 (2012).
[Crossref]

Jedrikiewicz, O.

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

Katranji, E. G.

Kazak, N.

Khilo, A. N.

Khilo, N.

Khilo, N. A.

Lavery, M.

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Leach, J.

Litvin, I. A.

Mazilu, M.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

McLaren, M.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
[Crossref] [PubMed]

Mhlanga, T.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Morelos, F. J.

Muller, N.

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

New, G. H. C.

J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
[Crossref]

Padgett, M. J.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
[Crossref] [PubMed]

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

Paterson, C.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Ramrez, H. C.

Rogel-Salazar, J.

J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
[Crossref]

Rogers, E. A.

Ropot, P.

Roux, F. S.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
[Crossref] [PubMed]

Roy, R.

Ryzhevich, A. A.

Smith, R.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Stevenson, D. J.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
[Crossref]

Su, P. A. Q.

Turunen, J.

U’Ren, A. B.

Vasara, A.

Vasilyeu, R.

Vega, J. C. G.

Zambrana-Puyalto, X.

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

Appl. Opt. (2)

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrikiewicz, P. Di Tramapani, and M. J. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011).
[Crossref]

J. Opt. (1)

Y. Ismail, N. Khilo, V. Belyi, and A. Forbes, “Shape invariant higher-order Bessel-like beams carrying orbital angular momentum,” J. Opt. 14(8), 085703 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. B 4(4), 651 (1987).
[Crossref]

Laser Photon. Rev. (1)

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev. 4(4), 529–547 (2010).
[Crossref]

Nat. Commun. (1)

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014).
[Crossref] [PubMed]

Opt. Commun. (3)

J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001).
[Crossref]

I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281(9), 2385–2392 (2008).
[Crossref]

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Photonics News (1)

A. Dudley, M. Lavery, M. J. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the difference between a conventional and shape-invariant Bessel beam: (a) A conventional Bessel beam is created with a digitally implemented axicon, resulting in a finite region where the Bessel field exists. (b) A novel phase screen is implemented to create a shape-invariant Bessel beam that exists in all space.
Fig. 2
Fig. 2 We trace ray between two planes and demand that they arrive with the same cone angle at the two extreme radii (origin and at rI).
Fig. 3
Fig. 3 Dependence of the cone angle from the geometrical optics and the wave optics approaches for different parameters of n and m. Design parameters where a12 = 2 × 10−3; a23 = 1 a13 = 1.2 × 10−3 where the subscripts refer to orders n and m, and rI = 3 mm.
Fig. 4
Fig. 4 Examples of the propagation characteristics of Bessel-like beams over an extended distance for rI = 1 mm, λ = 633 nm and (a) a12 = 2.8 10−3, (b) a13 = 8.7 10−3, (c) a23 = 0.2. Note that at the plane z = 0 the beam is a phase modulated Gaussian beam and not a Bessel function.
Fig. 5
Fig. 5 The far-field intensity pattern for two examples of n and m overlaid with this is a fit of an ideal Bessel beam intensity (red). The following parameters for the initial field were used: (a) (n = 1, m = 2): a12 = 2.8 10−3; (b) (n = 2, m = 3): a = 0.2, for rI = 1 mm, λ = 633 nm.
Fig. 6
Fig. 6 (a) Schematic of the experimental set-up. (b) Some example holograms for creating Bessel-like beams and the resulting measured intensity profiles. The laser was continuous wave at a wavelength of λ = 632.8 nm. It was expanded through a 3x magnification telescope (f1 = 100 mm and f2 = 300 mm) and directed to the SLM. The holograms on the SLM have a depicted range from 0 (white) through to 2π (black) phase shift in 256 steps. The beam after the SLM was Fourier transformed with lens L3 (focal length f3 = 200 mm) and the resulting beam measured on the CCD camera at the focal plane of this lens.
Fig. 7
Fig. 7 (a) Near-field and (b) Far-field images of the Bessel-like beam, both theoretically (TOP) and experimentally (BOTTOM). The near-field experimental image was at a distance of 62 cm from the optical element, while the far-field was measured at the focal plane of a lens with a focal length of 40 cm.
Fig. 8
Fig. 8 (a)The experimental verification of the z-dependent radial wave number k r (z)=k α c (z) , as given in Table 1 for following parameters of the phase screen and laser beam: λ = 633 nm, a = 0.01, rI = 0.85 mm. (b) Correspondingly obtained experimental intensity distributions at distances 0.8 m (1 and 2) and 1.6 m (3 and 4) and for n = 1, m = 2 (1 and 3) ; n = 2, m = 3 (2 and 4).

Tables (1)

Tables Icon

Table 1 Dependence of αcn,m angle (the cone angle of obtained Bessel beam transversal distribution) on the propagation distance z and the coefficients a and rI.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ(r)=exp[ i k 0 ( a r n +b r m ) ],
an r 0 n1 +bm r 0 m1 + r 0 z r s z =0.
b=a n m ( r I ) nm .
u(r) J 0 [k α c (z)r],
2 α c = α b .
{ an r c n1 +bm r c m1 + r c z =0 r c z α c ,
{ an r b n1 +bm r b m1 + r b z r I z =0 r b + r I z α b .
α c +an ( r I ) nm ( z α c ) m1 +an( r I nm ( r I +2z α c ) m1 + ( r I +2z α c ) n1 )an ( z α c ) n1 =0.

Metrics