Abstract

This paper demonstrates a new type of frequency tunable polarization selective surface operating at low THz, which is devised by utilizing the unique features of graphene. The device is comprised of an infinite array of identical unit cells in three layers. Multiple graphene dipoles are placed on the top and bottom layers to form the vertical and horizontal electric field filters. Using this new configuration, the proposed device exhibits reflection for the incident Left-Hand-Circular-Polarization (LHCP) waves and becomes transparent to the incoming Right-Hand-Circular-Polarization (RHCP) waves. The excited localized surface plasmonic resonance mode on the graphene based unit cells significantly reduces the physical dimension of the device. The unit cell dimension of the proposed design is in the order of 0.18 wavelengths in comparison to conventional metallic structures, where it is of order a half a wavelength. In the full wave analysis, the graphene based polarization selective surfaces exhibit an isolation of 21 dB for LHCP waves and a transmission loss of around 5.1 dB for waves with RHCP characteristics. The performance has also been examined under oblique incidence. The results fully verify that the proposed planar device operates properly for incident angles up to 40°. The tuning effect of the described device is investigated by varying the chemical potentials of graphene. Significant frequency reconfiguration capability is achieved in the isolation of LHCP incident waves, and meanwhile, for RHCP incidence, the transmission rate remains reasonably high.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based plasmonic switches at near infrared frequencies

J. S. Gómez-Díaz and J. Perruisseau-Carrier
Opt. Express 21(13) 15490-15504 (2013)

Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 22(19) 22743-22752 (2014)

Large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure

Bian Wu, Yue Hu, Yu Tong Zhao, Wei Bing Lu, and Wei Zhang
Opt. Express 26(12) 15353-15361 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. V. Tilston, T. Tralman, and S. M. Khanna, “A polarization selective surface for circular polarisation,” Digest IEEE International Symposium on Antennas and Propagation (Academic, Syracuse, NY, 1988), 762–765.
  2. G. A. Morin, “A Simple Circular Polarization Selective Surface (CPSS),” Digest IEEE International Symposium on Antennas and Propagation (Academic, Dallas, Texas, 1990), 100–103.
    [Crossref]
  3. G. A. Morin, “Circular Polarization Selective Surface Made of Resonant Spirals,” US Patent No. 5280298, Jan. 18, 1994.
  4. I.-Y. Tarn and S.-J. Chung, “A New Advance in Circular Polarization Selective Surface- A Three Layered CPSS Without Vertical Conductive Segments,” IEEE Trans. Antenn. Propag. 55(2), 460–467 (2007).
  5. J. Huang and R. J. Pogorzelski, “A Ka-band microstripreflectarray with elements having variable rotation angles,” IEEE Trans. Antenn. Propag. 46(5), 650–656 (1998).
    [Crossref]
  6. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
    [Crossref] [PubMed]
  7. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
    [Crossref] [PubMed]
  8. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
    [Crossref] [PubMed]
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  10. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  13. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  14. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  15. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
    [Crossref] [PubMed]
  16. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  17. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
    [Crossref]
  18. P.-Y. Chen and A. Alù, “Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  19. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
    [Crossref]
  20. J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
    [Crossref] [PubMed]
  21. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  22. Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
    [Crossref]
  23. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodicgraphenemetasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  24. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  25. P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref]
  26. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  27. M. V. Balaban, A. Vukovic, T. M. Benson, and A. I. Nosich, “Accurate Numerical Study of Graphene Disk Surface Plasmon Resonances,” IEEE XXXIII International Scientific Conference on Electronics and Nanotechnology (Academic, Kiev, 2013), 73–75.
    [Crossref]

2014 (1)

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

2012 (8)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodicgraphenemetasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

2011 (4)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

P.-Y. Chen and A. Alù, “Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (2)

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref]

2009 (2)

2008 (2)

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

I.-Y. Tarn and S.-J. Chung, “A New Advance in Circular Polarization Selective Surface- A Three Layered CPSS Without Vertical Conductive Segments,” IEEE Trans. Antenn. Propag. 55(2), 460–467 (2007).

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

1998 (1)

J. Huang and R. J. Pogorzelski, “A Ka-band microstripreflectarray with elements having variable rotation angles,” IEEE Trans. Antenn. Propag. 46(5), 650–656 (1998).
[Crossref]

Alù, A.

P.-Y. Chen and A. Alù, “Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Avouris, P.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bludov, Y. V.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Chang, Y. M.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alù, “Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Choi, C.-G.

Chung, S.-J.

I.-Y. Tarn and S.-J. Chung, “A New Advance in Circular Polarization Selective Surface- A Three Layered CPSS Without Vertical Conductive Segments,” IEEE Trans. Antenn. Propag. 55(2), 460–467 (2007).

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodicgraphenemetasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Hangyo, M.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hsieh, C.-F.

Huang, J.

J. Huang and R. J. Pogorzelski, “A Ka-band microstripreflectarray with elements having variable rotation angles,” IEEE Trans. Antenn. Propag. 46(5), 650–656 (1998).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Kim, H.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kim, J. T.

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Kono, J.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Lai, Y.-C.

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Lee, J. H.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Pan, C.-L.

Pan, R.-P.

Peres, N. M. R.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodicgraphenemetasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Pogorzelski, R. J.

J. Huang and R. J. Pogorzelski, “A Ka-band microstripreflectarray with elements having variable rotation angles,” IEEE Trans. Antenn. Propag. 46(5), 650–656 (1998).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Saito, M.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shen, Y.-R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Song, Y.-W.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

Takano, K.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tarn, I.-Y.

I.-Y. Tarn and S.-J. Chung, “A New Advance in Circular Polarization Selective Surface- A Three Layered CPSS Without Vertical Conductive Segments,” IEEE Trans. Antenn. Propag. 55(2), 460–467 (2007).

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vasilevskiy, M. I.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Watanabe, W.

Yamada, I.

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

ACS Nano (2)

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

P.-Y. Chen and A. Alù, “Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

I.-Y. Tarn and S.-J. Chung, “A New Advance in Circular Polarization Selective Surface- A Three Layered CPSS Without Vertical Conductive Segments,” IEEE Trans. Antenn. Propag. 55(2), 460–467 (2007).

J. Huang and R. J. Pogorzelski, “A Ka-band microstripreflectarray with elements having variable rotation angles,” IEEE Trans. Antenn. Propag. 46(5), 650–656 (1998).
[Crossref]

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable Graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

Nano Lett. (4)

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and F. Wang, “Electrical Control of Optical Plasmon Resonance with Graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Grapheneplasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphenehyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodicgraphenemetasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Other (4)

M. V. Balaban, A. Vukovic, T. M. Benson, and A. I. Nosich, “Accurate Numerical Study of Graphene Disk Surface Plasmon Resonances,” IEEE XXXIII International Scientific Conference on Electronics and Nanotechnology (Academic, Kiev, 2013), 73–75.
[Crossref]

W. V. Tilston, T. Tralman, and S. M. Khanna, “A polarization selective surface for circular polarisation,” Digest IEEE International Symposium on Antennas and Propagation (Academic, Syracuse, NY, 1988), 762–765.

G. A. Morin, “A Simple Circular Polarization Selective Surface (CPSS),” Digest IEEE International Symposium on Antennas and Propagation (Academic, Dallas, Texas, 1990), 100–103.
[Crossref]

G. A. Morin, “Circular Polarization Selective Surface Made of Resonant Spirals,” US Patent No. 5280298, Jan. 18, 1994.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sheet conductivity characteristics of graphene materials (a) Real part and (b) Image part.
Fig. 2
Fig. 2 Schematic of the graphene based polarization selective surfaces.
Fig. 3
Fig. 3 The performances of the proposed polarization selective surfaces (a) electric field distribution in bottom layer for LHCP waves incidence, (b) electric field distribution in bottom layer for RHCP waves incidence, (c) isolation curve for LHCP waves, (d) transmission loss curve for RHCP waves.
Fig. 4
Fig. 4 Oblique incident analysis results (a) isolation curve for LHCP waves, (b) transmission loss curve for RHCP waves.
Fig. 5
Fig. 5 Possible biasing arrangement for the graphene based CPSS.
Fig. 6
Fig. 6 Frequency tunable analysis for the proposed polarization selective surfaces: (a) isolation curve for LHCP waves, (b) transmission loss curve for RHCP waves.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ intra ( ω, μ c ,Γ,T )=j e 2 k B T π 2 ( ωj2Γ ) ( μ c k B T +2ln( e μ c k B T +1 ))
σ inter ( ω, μ c ,Γ )=j e 2 4π ln( 2| μ c |(ωj2Γ) 2| μ c |+(ωj2Γ) )
Isolation (dB)=10log( P out (LHCP) P in (LHCP) )
Transmission Loss (dB)=10log( P out (RHCP) P in (RHCP) )

Metrics