Abstract

Polarization-resolved imaging offers many advantages over conventional imaging because it provides additional information on materials and scenes. In this study, we present an image sensor pixel for polarization-resolved imaging based on an all-silicon nanowire device. As the structure has an intrinsically polarization-dependent response, it is not necessary to employ a polarizer. We fabricate pixels consisting of etched vertical silicon nanowires with elliptical cross-sections that incorporate vertical p-i-n junctions. Our photocurrent measurement reveals that the spectral responsivities are dependent on the polarization state of incident light. Polarization-resolved imaging is performed with fabricated devices. This approach is different from conventional approaches using polarization filters because absorbed light in the elliptical nanowire is converted to photocurrent while light absorbed by a polarization filter is discarded.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bio-inspired color-polarization imager for real-time in situ imaging

Missael Garcia, Christopher Edmiston, Radoslav Marinov, Alexander Vail, and Viktor Gruev
Optica 4(10) 1263-1271 (2017)

CCD polarization imaging sensor with aluminum nanowire optical filters

Viktor Gruev, Rob Perkins, and Timothy York
Opt. Express 18(18) 19087-19094 (2010)

Full-Stokes imaging polarimeter using an array of elliptical polarizer

Wei-Liang Hsu, Graham Myhre, Kaushik Balakrishnan, Neal Brock, Mohammed Ibn-Elhaj, and Stanley Pau
Opt. Express 22(3) 3063-3074 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
    [Crossref] [PubMed]
  2. T. Labhart, “Polarization-opponent interneurons in the insect visual system,” Nature 331(6155), 435–437 (1988).
    [Crossref]
  3. J. N. Lythgoe and C. C. Hemmings, “Polarized light and underwater vision,” Nature 213(5079), 893–894 (1967).
    [Crossref] [PubMed]
  4. T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
    [Crossref] [PubMed]
  5. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  6. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Separation and contrast enhancement of overlapping cast shadow components using polarization,” Opt. Express 14(16), 7099–7108 (2006).
    [Crossref] [PubMed]
  7. J. O. Stenflo and H. Povel, “Astronomical polarimeter with 2-D detector arrays,” Appl. Opt. 24(22), 3893–3898 (1985).
    [Crossref] [PubMed]
  8. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
    [Crossref] [PubMed]
  9. E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
    [Crossref]
  10. Z. Nan, J. Xiaoyu, G. Qiang, H. Yonghong, and M. Hui, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48(35), 6734–6739 (2009).
    [Crossref] [PubMed]
  11. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35(11), 1855–1870 (1996).
    [Crossref] [PubMed]
  12. M. P. Rowe, E. N. Pugh, J. S. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20(6), 608–610 (1995).
    [Crossref] [PubMed]
  13. L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
    [Crossref]
  14. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [Crossref]
  15. Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
    [Crossref]
  16. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [Crossref] [PubMed]
  17. M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [Crossref] [PubMed]
  18. M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
    [Crossref]
  19. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
    [Crossref]
  20. Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
    [Crossref] [PubMed]
  21. J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
    [Crossref] [PubMed]
  22. J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
    [Crossref] [PubMed]
  23. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
    [Crossref]
  24. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  25. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
    [Crossref] [PubMed]
  26. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [Crossref] [PubMed]
  27. S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
    [Crossref] [PubMed]
  28. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref] [PubMed]
  29. H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci Rep 3, 2460 (2013).
    [Crossref] [PubMed]
  30. H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
    [Crossref]
  31. H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
    [Crossref] [PubMed]
  32. E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
    [Crossref] [PubMed]
  33. D. Misra and E. L. Heasell, “Electrical damage to silicon devices due to reactive ion etching,” Semicond. Sci. Technol. 5(3), 229–236 (1990).
    [Crossref]
  34. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [Crossref] [PubMed]
  35. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19(S5Suppl 5), A1067–A1081 (2011).
    [Crossref] [PubMed]
  36. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [Crossref] [PubMed]

2014 (1)

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

2013 (1)

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci Rep 3, 2460 (2013).
[Crossref] [PubMed]

2012 (5)

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
[Crossref]

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[Crossref] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

2011 (4)

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19(S5Suppl 5), A1067–A1081 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

2010 (3)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

2009 (5)

Z. Nan, J. Xiaoyu, G. Qiang, H. Yonghong, and M. Hui, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48(35), 6734–6739 (2009).
[Crossref] [PubMed]

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (2)

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Separation and contrast enhancement of overlapping cast shadow components using polarization,” Opt. Express 14(16), 7099–7108 (2006).
[Crossref] [PubMed]

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

2004 (2)

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

2003 (2)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

2002 (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

1999 (2)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[Crossref]

1997 (1)

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

1996 (1)

1995 (1)

1990 (1)

D. Misra and E. L. Heasell, “Electrical damage to silicon devices due to reactive ion etching,” Semicond. Sci. Technol. 5(3), 229–236 (1990).
[Crossref]

1988 (1)

T. Labhart, “Polarization-opponent interneurons in the insect visual system,” Nature 331(6155), 435–437 (1988).
[Crossref]

1985 (1)

1967 (1)

J. N. Lythgoe and C. C. Hemmings, “Polarized light and underwater vision,” Nature 213(5079), 893–894 (1967).
[Crossref] [PubMed]

Ager, J. W.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Ahn, J. H.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

Asatryan, A. A.

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Bermak, A.

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

Botten, L. C.

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Boussaid, F.

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

Brongersma, M. L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Cahoon, J. F.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

Caldwell, R. L.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Cao, L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Cheroske, A. G.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Chigrinov, V. G.

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

Chiou, T.-H.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Chueh, Y.-L.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Cronin, T. W.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Crozier, K. B.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci Rep 3, 2460 (2013).
[Crossref] [PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
[Crossref]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Dan, Y.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Day, R. W.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

de Sterke, C. M.

Do, J.-W.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Dossou, K. B.

Duane, P. K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Engheta, N.

Ergen, O.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Fan, P.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Fan, Z.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Goldberger, J.

M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Gruev, V.

Harris, A. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Heasell, E. L.

D. Misra and E. L. Heasell, “Electrical damage to silicon devices due to reactive ion etching,” Semicond. Sci. Technol. 5(3), 229–236 (1990).
[Crossref]

Hemmings, C. C.

J. N. Lythgoe and C. C. Hemmings, “Polarized light and underwater vision,” Nature 213(5079), 893–894 (1967).
[Crossref] [PubMed]

Ho, J. C.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Hu, H.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Hu, J.

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[Crossref]

Hui, M.

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Javey, A.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Jeon, S.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Jiggins, C.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Jin, S.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

Johnsen, S.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Kang, S. J.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Kempa, T. J.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

Kim, H.-S.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Kim, K. H.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Kim, S. K.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

Kulkarni, M.

Labhart, T.

T. Labhart, “Polarization-opponent interneurons in the insect visual system,” Nature 331(6155), 435–437 (1988).
[Crossref]

Law, M.

M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Lazarus, N.

Lee, K. J.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Leu, P. W.

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Li, X.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Lieber, C. M.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[Crossref]

Lin, S.-S.

Lu, W.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

Lythgoe, J. N.

J. N. Lythgoe and C. C. Hemmings, “Polarized light and underwater vision,” Nature 213(5079), 893–894 (1967).
[Crossref] [PubMed]

Mancini, T. A.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

Marshall, J.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

McPhedran, R. C.

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Misra, D.

D. Misra and E. L. Heasell, “Electrical damage to silicon devices due to reactive ion etching,” Semicond. Sci. Technol. 5(3), 229–236 (1990).
[Crossref]

Moriwaki, A.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Nan, Z.

Neale, S.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Neel, V. A.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Ning, C.-Z.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Nuzzo, R. G.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Odom, T. W.

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[Crossref]

Ortu, A.

Park, H.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci Rep 3, 2460 (2013).
[Crossref] [PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
[Crossref]

Park, H.-G.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Perkins, R.

Pouliquen, P.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

Poulton, C. G.

Povel, H.

Pugh, E. N.

Qiang, G.

Razavi, H.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Reichertz, L. A.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Rogers, J. A.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Rowe, M. P.

Salomatina-Motts, E.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Schonbrun, E.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Seo, K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
[Crossref]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Shashar, N.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Shin, J. C.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Song, K.-D.

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Stenflo, J. O.

Sturmberg, B. C. P.

Sun, Y.

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Sweeney, A.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

Takahashi, T.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Tyo, J. S.

Van der Spiegel, J.

Wang, B.

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Wober, M.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Wolff, L. B.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

Wu, M.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Xiaojin, Z.

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

Xiaoyu, J.

Yang, P.

M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Yaroslavskaya, A. N.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Yemelyanov, K. M.

Yin, L.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Yonghong, H.

York, T.

Yu, K.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Yu, K. J.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Yu, Y. J.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

Zuo, J.-M.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[Crossref]

Adv. Mater. (1)

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16(21), 1890–1893 (2004).
[Crossref]

Annu. Rev. Mater. Res. (1)

M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101(19), 193107 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Xiaojin, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[Crossref]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

IEEE Trans. Robot. Autom. (1)

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom. 13(2), 195–203 (1997).
[Crossref]

Integr. Comp. Biol. (1)

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43(4), 549–558 (2003).
[Crossref] [PubMed]

Nano Lett. (7)

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[Crossref] [PubMed]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10(4), 1229–1233 (2010).
[Crossref] [PubMed]

S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12(9), 4971–4976 (2012).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[Crossref] [PubMed]

Nat. Med. (1)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Nature (3)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: Polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[Crossref] [PubMed]

T. Labhart, “Polarization-opponent interneurons in the insect visual system,” Nature 331(6155), 435–437 (1988).
[Crossref]

J. N. Lythgoe and C. C. Hemmings, “Polarized light and underwater vision,” Nature 213(5079), 893–894 (1967).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Spectrosc. (1)

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Sci Rep (1)

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci Rep 3, 2460 (2013).
[Crossref] [PubMed]

Science (1)

J. H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science 314(5806), 1754–1757 (2006).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

D. Misra and E. L. Heasell, “Electrical damage to silicon devices due to reactive ion etching,” Semicond. Sci. Technol. 5(3), 229–236 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Elliptical silicon nanowire photodetectors. (a) Schematic concept of our device. Nanowire’s absorption depends on polarization of incident light. (b) Fabrication process for elliptical silicon nanowire photodetectors. An epitaxial wafer with p+/n-/n + layers is prepared. Etch mask that comprises aluminum elliptical disks is patterned on wafer and dry etching is performed to fabricate vertical nanowires. PMMA spacer is fabricated and transparent top contact (ITO) is deposited. (c) SEM image of elliptical nanowires after dry etching. Four elliptical nanowire arrays with four different orientations are fabricated (image in center). Scale bar is 100 μm. Magnified views (side images) of arrays (N1, N2, N3 and N4) show that constituent nanowires have orientations of 0°, 45°, −45° and 90°. Scale bar in magnified image is 100 nm. (d) Tilted (30°) SEM view of elliptical nanowire array. Scale bar is 1 μm. (e) Side view of nanowires from four arrays. Scale bar is 200 nm. (f) Optical microscope images of elliptical nanowire arrays under linearly polarized illumination. Arrow indicates polarization of incident light (polarization angle θ = 0°, 45°, −45° and 90°). Scale bar is 100 μm.
Fig. 2
Fig. 2 Measurements of fabricated devices. (a) Log scale I-V curve of nanowire arrays in dark (no illumination). (b) I-V curve of array N4(90°) in dark / under illumination of 820 mW / cm2 at a wavelength of 633 nm. Light is linearly polarized parallel to long axis of elliptical nanowires (θ = 90°). (c) Measured external quantum efficiencies (QE) spectra of array N1(0°) under vertically- and horizontally-polarized illumination (θ = 0°, θ = 90°). (d) Simulated external QE spectra of array N1(0°). (e) Extinction ratio calculated from measured external QE of Fig. 2(c). Dotted line indicates cut-off wavelength (λcut-off = 665 nm) of long pass filter used in later experiments. (f) Normalized photocurrent at wavelength of 700 nm as a function of polarization angle θ.
Fig. 3
Fig. 3 Polarization-resolved imaging using fabricated device. (a) Images captured by nanowire arrays N1(0°), N2(45°), N3(−45°) and N4(90°) (b) Degree-of-linear polarization (DOLP) image found from images of Fig. 3(a). (c) Angle of polarization (AOP) image found from images of Fig. 3(a). (d) Schematic of experimental setup used for demonstrating polarization-resolved imaging with nanowire device. Coin below glass slide cannot be seen clearly due to strong reflection from glass. (e) Image taken by conventional camera with horizontal and vertical polarization filters. Arrow indicates axis of polarization filter. (f) Images captured by our elliptical nanowire arrays N4(90°) and N1(0°). Gamma correction of 1 / 2.2 is applied.

Metrics