Abstract

The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters of the particle and the tribological parameters of the surrounding fluid. The theoretical findings have been adequately confirmed in experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles

Qingkun Liu, Theodor Asavei, Taewoo Lee, Halina Rubinsztein-Dunlop, Sailing He, and Ivan I. Smalyukh
Opt. Express 19(25) 25134-25143 (2011)

Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations

Manman Li, Shaohui Yan, Baoli Yao, Yansheng Liang, and Peng Zhang
Opt. Express 24(18) 20604-20612 (2016)

Perspective on light-induced transport of particles: from optical forces to phoretic motion

Pavel Zemánek, Giorgio Volpe, Alexandr Jonáš, and Oto Brzobohatý
Adv. Opt. Photon. 11(3) 577-678 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley,1983).
  2. A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
    [Crossref] [PubMed]
  3. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [Crossref] [PubMed]
  4. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
    [Crossref]
  5. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
    [Crossref] [PubMed]
  6. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
    [PubMed]
  7. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles,” Opt. Express 21(7), 8922–8938 (2013).
    [Crossref] [PubMed]
  8. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
    [Crossref]
  9. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [Crossref] [PubMed]
  10. J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).
  11. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  12. R. A. Freitas, “Current status of nanomedicine and medical nanorobotics,” J. Comp. Theo. Nanosci. 2, 1–25 (2005).
  13. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).
  14. J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
    [Crossref]
  15. T. Henning, “Interstellar dust grains – An overview,” Molecules in Astrophysics: Probes and Processes 178, 343–356 (1997).
  16. A. B. Pluchino, S. S. Goldberg, J. M. Dowling, and C. M. Randall, “Refractive-index measurements of single micron-sized carbon particles,” Appl. Opt. 19(19), 3370–3372 (1980).
    [Crossref] [PubMed]
  17. P. J. Wyatt, “Some chemical, physical, and optical properties of fly ash particles,” Appl. Opt. 19(6), 975–983 (1980).
    [Crossref] [PubMed]
  18. P. Chylek, V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22(15), 2302–2307 (1983).
    [Crossref] [PubMed]
  19. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
    [Crossref] [PubMed]
  20. P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30(5), 2508–2516 (1984).
    [Crossref]
  21. S. Chang and S. S. Lee, “Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam,” J. Opt. Soc. Am. B 2(11), 1853–1860 (1985).
    [Crossref]
  22. J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73(3), 303–312 (1983).
    [Crossref]
  23. S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos Trans A Math Phys Eng Sci 368(1914), 927–939 (2010).
    [PubMed]
  24. I. Brevik, “What do experiments in optics tell us about photon momentum in media?” Preprint at http://arxiv.org/abs/1310.3684v1 (2013).
  25. A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Mie scattering and optical forces from evanescent fields: a complex-angle approach,” Opt. Express 21(6), 7082–7095 (2013).
    [Crossref] [PubMed]
  26. M. Abramovitz and I. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series 55, 1964.
  27. A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
    [Crossref]
  28. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
    [Crossref]
  29. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  30. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
    [Crossref]
  31. B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
    [Crossref]
  32. Atago Abbe Refractometer Model NAR-1T SOLID, User Manual (2010).
  33. Model 6300, Visible Range Spectrophotometer, Operating Manual, http://www.keison.co.uk/products/jenway/6300_6320_Manual.pdf

2014 (1)

J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).

2013 (3)

2012 (1)

2011 (2)

O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

2010 (2)

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos Trans A Math Phys Eng Sci 368(1914), 927–939 (2010).
[PubMed]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
[Crossref] [PubMed]

2008 (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[Crossref]

2007 (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

2006 (1)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

2005 (1)

R. A. Freitas, “Current status of nanomedicine and medical nanorobotics,” J. Comp. Theo. Nanosci. 2, 1–25 (2005).

2003 (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

1999 (1)

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

1997 (2)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

T. Henning, “Interstellar dust grains – An overview,” Molecules in Astrophysics: Probes and Processes 178, 343–356 (1997).

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1985 (1)

1984 (1)

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30(5), 2508–2516 (1984).
[Crossref]

1983 (2)

1980 (3)

1979 (1)

J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
[Crossref]

Angelsky, O. V.

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

P. Chylek, V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22(15), 2302–2307 (1983).
[Crossref] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

Barnett, S. M.

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos Trans A Math Phys Eng Sci 368(1914), 927–939 (2010).
[PubMed]

Bekshaev, A. Y.

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Mie scattering and optical forces from evanescent fields: a complex-angle approach,” Opt. Express 21(6), 7082–7095 (2013).
[Crossref] [PubMed]

Bekshaev, A. Ya.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Bliokh, K. Y.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

Burns, J. A.

J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
[Crossref]

Chang, S.

Chantada, L.

Chylek, P.

Crichton, J. H.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30(5), 2508–2516 (1984).
[Crossref]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[Crossref]

Dowling, J. M.

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Dziedzic, J. M.

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Freitas, R. A.

R. A. Freitas, “Current status of nanomedicine and medical nanorobotics,” J. Comp. Theo. Nanosci. 2, 1–25 (2005).

García-Cámara, B.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Goldberg, S. S.

Gómez-Medina, R.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
[Crossref] [PubMed]

González, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Gorsky, M. P.

Hanson, S. G.

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Henning, T.

T. Henning, “Interstellar dust grains – An overview,” Molecules in Astrophysics: Probes and Processes 178, 343–356 (1997).

Jansen, B. J. P.

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

Kim, J. S.

Knoner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

Lamy, P. L.

J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
[Crossref]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Lee, S. S.

Lemstra, P. J.

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

Loudon, R.

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos Trans A Math Phys Eng Sci 368(1914), 927–939 (2010).
[PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Marston, P. L.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30(5), 2508–2516 (1984).
[Crossref]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[Crossref]

Meijer, H. E. H.

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

Moreno, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Nieto-Vesperinas, M.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
[Crossref] [PubMed]

Nori, F.

Pluchino, A. B.

Ramaswamy, V.

Randall, C. M.

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Sáenz, J. J.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18(11), 11428–11443 (2010).
[Crossref] [PubMed]

Soter, S.

J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
[Crossref]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Tamminga, K. Y.

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

Wang, L. H. V.

J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).

Wyatt, P. J.

Xia, J.

J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).

Yao, J.

J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).

Zenkova, C. Yu.

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (3)

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Icarus (1)

J. A. Burns, P. L. Lamy, and S. Soter, “Radiation forces on small particles in the solar system,” Icarus 40(1), 1–48 (1979).
[Crossref]

J. Comp. Theo. Nanosci. (1)

R. A. Freitas, “Current status of nanomedicine and medical nanorobotics,” J. Comp. Theo. Nanosci. 2, 1–25 (2005).

J. Nanophoton. (2)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

J. Opt. (1)

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

J. Opt. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), 196–203 (2007), http://www.physics.uq.edu.au/people/nieminen/software.html .
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[Crossref] [PubMed]

Molecules in Astrophysics: Probes and Processes (1)

T. Henning, “Interstellar dust grains – An overview,” Molecules in Astrophysics: Probes and Processes 178, 343–356 (1997).

Opt. Express (5)

Philos Trans A Math Phys Eng Sci (1)

S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos Trans A Math Phys Eng Sci 368(1914), 927–939 (2010).
[PubMed]

Phys. Rev. A (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30(5), 2508–2516 (1984).
[Crossref]

Polymer (Guildf.) (1)

B. J. P. Jansen, K. Y. Tamminga, H. E. H. Meijer, and P. J. Lemstra, “Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins,” Polymer (Guildf.) 40(20), 5601–5607 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

J. Xia, J. Yao, and L. H. V. Wang, “Photoacoustic tomography: principles and advances (invited review),” Prog. Electromagnetics Res. 147, 1–22 (2014).

Science (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

Other (6)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley,1983).

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).

I. Brevik, “What do experiments in optics tell us about photon momentum in media?” Preprint at http://arxiv.org/abs/1310.3684v1 (2013).

M. Abramovitz and I. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series 55, 1964.

Atago Abbe Refractometer Model NAR-1T SOLID, User Manual (2010).

Model 6300, Visible Range Spectrophotometer, Operating Manual, http://www.keison.co.uk/products/jenway/6300_6320_Manual.pdf

Supplementary Material (2)

» Media 1: MOV (3621 KB)     
» Media 2: MOV (6889 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scattering of a Gaussian beam by an axially-trapped particle: the beam axis coincides with the axis z, and the particle centre is situated at a distance z0 from the beam waist.
Fig. 2
Fig. 2 Schematic of the experimental setup: (1) laser; (2) beam expander with spatial filter; (3) mirror; (4) quarter-wave plate; (5), (7) and (8) objective lenses; (6) cell with probing particles suspended in water; (9) CCD-camera; (10) personal computer; (11) control unit.
Fig. 3
Fig. 3 Video of the particle’s spinning motion: (a) latex particle with Renp = 1.5, r = 0.5 μm, laser beam power 100 mW, see also in Media 1; (b) gamboge particle with Renp = 1.584, r = 0.4 μm, the beam power varying from 20 to 100 mW and back to zero, see also in Media 2.
Fig. 4
Fig. 4 Spinning rate of the gamboge particle of Fig. 3(b) vs the laser beam power: (markers) experimental data, (black) their linear fitting, (red) calculated by Eq. (5) for n p =1.584+1.24 10 3 i , other conditions as in Fig. 3. The corresponding transition coefficient in Eq. (13) is presented in the 3rd row, 4th column of Table 1.
Fig. 5
Fig. 5 Dependence of the (blue) radiation torque (5) and (red) corresponding angular velocity (12) of the spinning motion on the particle absorption index κ for a particle of radius r = 0.5 μm with μp = 1 suspended in water (μ = 1, n = 1.33, η = 8.9⋅10−3 dyn⋅s⋅cm–2) and exposed to a circularly polarized Gaussian beam with wavelength λ = 0.65 μm (wavenumber in water k = 1.286⋅105 cm–1) and power 100 mW, focused into the spot with radius w0 = 2 μm; thick (thin) lines correspond to the particle refraction index n p =1.5+iκ ( n p =1.2+iκ ). Inset: relative deviation of the real Ω−κ dependence from the linear approximation (13)
Fig. 6
Fig. 6 (Blue) radiation torque and (red) corresponding angular velocity of the spinning motion of the particle with the absorption index κ = 4⋅10−4 suspended in water and trapped in the center of the Gaussian beam of Fig. 5: (a) Renp = 1.5, z0 = 0, particle radius r is variable; (b) r = 0.5 μm, z0 = 0, Renp is variable; (c) r = 0.5 μm, Renp = 1.5, z0 is variable.

Tables (1)

Tables Icon

Table 1 Summary of the optical parameters and measured data for three sorts of particles trapped within the focused Gaussian beam with w0 = 2 μm and P = 100 mW

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

F= 2πI k 2 c n =1 Re[ ( 2+1 )( a + b ) 2( +2 ) +1 ( a a +1 * + b b +1 * ) 2( 2+1 ) ( +1 ) a b * ] ,
T= 2πI k 2 ω σ =1 ( 2+1 )Re( a + b | a | 2 | b | 2 )
a = m ε ψ ( mx ) ψ ( x ) m μ ψ ( x ) ψ ( mx ) m ε ψ ( mx ) ξ ( x ) m μ ξ ( x ) ψ ( mx ) , b = m μ ψ ( mx ) ψ ( x ) m ε ψ ( x ) ψ ( mx ) m μ ψ ( mx ) ξ ( x ) m ε ξ ( x ) ψ ( mx )
ξ ( u )=u h ( 1 ) ( u ), ξ ( u )= d[ u h ( 1 ) ( u ) ] d( u ) , ψ ( u )=u j ( u ), ψ ( u )= d[ u j ( u ) ] du ,
m ε = ε p ε , m μ = μ p μ ,m= n p n = ε p μ p εμ .
T= | C | 2 2 k 3 σ =1 2 ( +1 ) 2 ( 2+1 ) Re[ | α( ,1 ) | 2 ( b | b | 2 )+ | β( ,1 ) | 2 ( a | a | 2 ) ] ,
| C | 2 = 8P w 0 2 ε cnμ =4π I 0 ε cnμ ,
α( ,1 )=ip e p 2+1 ( +1 ) h ( 1 ) ( ipk z 0 ), β( ,1 )=p e p h +1 ( 1 ) ( ipk z 0 )( +1 ) h 1 ( 1 ) ( ipk z 0 ) ( +1 ) ,
p= 1 2 ( k w 0 ) 2
h ( 1 ) ( ip ) p e p p exp( i π 2 ),
a 1 =i 2 k 3 3ε α e , b 1 =i 2 k 3 3μ α m .
F= 6πI k 2 c Re( a 1 )=4πI kn εc Im( α e ),
T= 6πI k 2 ω σRe( a 1 | a 1 | 2 )=4πI n εc σ( Im( α e ) 2 k 3 3ε | α e | 2 ).
α e = α e 0 1i 2 k 3 3ε α e 0 α e 0 +i 2 k 3 3ε | α e 0 | 2
Ω= T 8πη r 3
κ=q Ω P

Metrics