Abstract

Here we propose a strategy to enhance the light-matter interaction of two-dimensional (2D) material monolayers based on strong interference effect in planar nanocavities, and overcome the limitation between optical absorption and the atomically-thin thickness of 2D materials. By exploring the role of spacer layers with different thicknesses and refractive indices, we demonstrate that a nanocavity with an air spacer layer placed between a graphene monolayer and an aluminum reflector layer will enhance the exclusive absorption in the graphene monolayer effectively, which is particularly useful for the development of atomically-thin energy harvesting/conversion devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures

Hua Lu, Xuetao Gan, Dong Mao, Yicun Fan, Dexing Yang, and Jianlin Zhao
Opt. Express 25(18) 21630-21636 (2017)

Absorption enhancement in monolayer graphene using Tamm plasmon polaritons

Partha Sona Maji and Ritwick Das
OSA Continuum 1(2) 392-400 (2018)

Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer

Yongbing Long, Haidong Deng, Haitao Xu, Liang Shen, Wenbin Guo, Chunyu Liu, Wenhao Huang, Wentao Peng, Lixian Li, Hongji Lin, and Chao Guo
Opt. Mater. Express 7(1) 100-110 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  2. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  3. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  4. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  5. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
    [Crossref] [PubMed]
  6. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  7. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
    [Crossref] [PubMed]
  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  9. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
    [Crossref] [PubMed]
  10. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
    [Crossref]
  11. S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
    [Crossref] [PubMed]
  12. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  13. A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
    [Crossref]
  14. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  15. R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
    [Crossref]
  16. X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
    [Crossref] [PubMed]
  17. B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
    [Crossref] [PubMed]
  18. K. Balasubramanian and K. Kern, “25th anniversary article: Label-free electrical biodetection using carbon nanostructures,” Adv. Mater. 26(8), 1154–1175 (2014).
    [Crossref] [PubMed]
  19. H. Chang and H. Wu, “Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications,” Energy Environ. Sci. 6(12), 3483–3507 (2013).
    [Crossref]
  20. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  21. J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
    [Crossref]
  22. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
    [PubMed]
  23. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  24. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
    [Crossref] [PubMed]
  25. A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
    [Crossref]
  26. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons Ltd., 2007).
  28. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  29. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  30. C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
    [PubMed]
  31. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
    [Crossref] [PubMed]
  32. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
    [Crossref] [PubMed]
  33. A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
    [Crossref]
  34. S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
    [Crossref]
  35. C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
    [Crossref] [PubMed]
  36. N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
    [Crossref] [PubMed]
  37. J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
    [Crossref] [PubMed]
  38. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  39. M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
    [PubMed]
  40. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]

2014 (9)

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

K. Balasubramanian and K. Kern, “25th anniversary article: Label-free electrical biodetection using carbon nanostructures,” Adv. Mater. 26(8), 1154–1175 (2014).
[Crossref] [PubMed]

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[PubMed]

2013 (10)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[PubMed]

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

H. Chang and H. Wu, “Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications,” Energy Environ. Sci. 6(12), 3483–3507 (2013).
[Crossref]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

2012 (9)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

2010 (4)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

2009 (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

2007 (3)

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

1972 (1)

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Agrait, N.

A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Aközbek, N.

Alaee, R.

Aleksandrova, A.

Allegret, S.

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

Antoci, S.

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Arefe, G.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Avouris, P.

M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Avouris, Ph.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Balasubramanian, K.

K. Balasubramanian and K. Kern, “25th anniversary article: Label-free electrical biodetection using carbon nanostructures,” Adv. Mater. 26(8), 1154–1175 (2014).
[Crossref] [PubMed]

Balooch, M.

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Beltram, F.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bianco, G. V.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Boddeti, N. G.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Bruno, G.

Bunch, J. S.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Burgdörfer, J.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

Camagni, P.

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Castellanos-Gomez, A.

A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Chang, H.

H. Chang and H. Wu, “Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications,” Energy Environ. Sci. 6(12), 3483–3507 (2013).
[Crossref]

Chashnikova, M.

Chen, W.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Chen, X.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Choi, S.-H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Cui, X.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

D’Orazio, A.

de Ceglia, D.

De Vittorio, M.

Drew, H. D.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Duan, X.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Dunn, M. L.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Elle, J. A.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Elstner, M.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Englund, D.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Fai Mak, K.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Fan, C.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Fang, H.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Farhat, M.

Fedosenko, O.

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Ferreira, A.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

Flores, Y.

Freitag, M.

M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[PubMed]

Fuhrer, M. S.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Furchi, M. M.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

Gan, Q.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Gan, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Gao, Y.

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Gendt, S.

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Grande, M.

Gray, A.

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Gruska, B.

Guo, J.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Han, M.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Hatami, F.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Heinz, T. F.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hill, E. W.

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Hone, J.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hong, X.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Huang, J. H.

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Huang, Y.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Hwang, E.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Jang, C. W.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Jenkins, G. S.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Ji, D.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Jiang, D.

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Jiang, L.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Jin, C.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Joo, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kang, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kern, K.

K. Balasubramanian and K. Kern, “25th anniversary article: Label-free electrical biodetection using carbon nanostructures,” Adv. Mater. 26(8), 1154–1175 (2014).
[Crossref] [PubMed]

Kim, C. O.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kim, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Kim, J. H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kim, J. M.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kim, M.-H.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Kim, P.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Kim, S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kischkat, J.

Klinkmüller, M.

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Lederer, F.

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Lee, G. H.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Lee, J. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Li, D.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Li, H.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Li, J.

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Li, L.

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Li, X. J.

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Li, Y.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Li, Z.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Libisch, F.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

Lidorikis, E.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Liu, J. T.

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Liu, N. H.

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, X.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Liu, Y.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Liu, Z.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Long, R.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Low, T.

M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[PubMed]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, G.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Machulik, S.

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Manara, A.

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Masselink, W. T.

Milchberg, H. M.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Monastyrskyi, G.

Mueller, T.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Neto, A. H. C.

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Nuckolls, C.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Pellegrini, V.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Peres, N. M. R.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Peters, S.

Petruzzelli, V.

Piazza, V.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Pingue, P.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Polini, M.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Pospischil, A.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

Qi, W.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Ribeiro, R. M.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

Rockstuhl, C.

Roddaro, S.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Rubio-Bollinger, G.

A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

Scalora, M.

Semtsiv, M.

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shi, S. F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Shi, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Shin, D. H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Shiue, R.

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Shiue, R. J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Song, B.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Stauber, T.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stella, A.

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Stomeo, T.

Sun, Y.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Sushkov, A. B.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Szep, A.

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tongay, S.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Trusheim, M. E.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

van der Zande, A.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

van der Zande, A. M.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Vincenti, M. A.

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Walker, D.

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Wang, F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Wang, W.

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

Wu, H.

H. Chang and H. Wu, “Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications,” Energy Environ. Sci. 6(12), 3483–3507 (2013).
[Crossref]

Wu, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xiao, J.

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

Yan, J.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

Yang, R.

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Yao, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

Yin, A.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Yin, Z.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Yu, W. J.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Zhang, H.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Zhang, Q.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Zhang, Y.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Zhou, H.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

ACS Nano (3)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Adv. Mater. (2)

K. Balasubramanian and K. Kern, “25th anniversary article: Label-free electrical biodetection using carbon nanostructures,” Adv. Mater. 26(8), 1154–1175 (2014).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743, 2617 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

J. T. Liu, N. H. Liu, J. Li, X. J. Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett. 96(21), 213116 (2010).
[Crossref]

P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

R. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Englund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103(24), 241109 (2013).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

ChemPhysChem (1)

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

H. Chang and H. Wu, “Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications,” Energy Environ. Sci. 6(12), 3483–3507 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Gray, M. Balooch, S. Allegret, S. Gendt, and W. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104(5), 053109 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

S. Antoci, P. Camagni, A. Manara, and A. Stella, “Study of the optical response of WSe2 in the excitonic region,” J. Phys. Chem. Solids 33(6), 1177–1185 (1972).
[Crossref]

Nano Lett. (6)

N. G. Boddeti, X. Liu, R. Long, J. Xiao, J. S. Bunch, and M. L. Dunn, “Graphene blisters with switchable shapes controlled by pressure and adhesion,” Nano Lett. 13(12), 6216–6221 (2013).
[Crossref] [PubMed]

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO2.,” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 4785–4791 (2014).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[PubMed]

Nat Commun (1)

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat Commun 5, 3249 (2014).
[PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (7)

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7(7), 472–478 (2012).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85(11), 115438 (2012).
[Crossref]

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Other (1)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons Ltd., 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Modeled absorption spectra of a free-standing GR (black) and a three-layered system with a GR monolayer on a 40-nm-thick-Al2O3/Al film (red). Inset: Schematic of a GR monolayer on top of a lossless spacer layer and a Al film. (b) Modeled total absorption spectra of the three-layered system as the function of the thickness of the Al2O3 spacer layer. (c) Simulated total absorption of the three-layered system as the function of the spacer layer thickness and its refractive index under normal incident light at the wavelength of 400 nm.
Fig. 2
Fig. 2 (a) The phasor diagram and (b) modeled total absorption spectra of the GR monolayer on an 85-nm-thick-air/Al film (black), a 40-nm-thick-Al2O3/Al (red) and a 29-nm-thick-spacer (n = 2.4)/Al film (blue) under normal incidence. (c) and (d) are simulated angle and polarization dependent total absorption spectra of a GR monolayer on an air/Al cavity under (c) s-polarized and (d) p-polarized light, respectively.
Fig. 3
Fig. 3 (a) Modeled peak absorption of a GR monolayer on a spacer/Al film as the function of the optical constant of the lossless spacer layer. The red and black parts represent the absorption in the GR monolayer and Al layer, respectively. (b) Modeled exclusive absorption spectra of a GR monolayer on 85-nm-thick-air/Al (black), 40-nm-thick-Al2O3/Al (red) and 29-nm-thick-spacer (n = 2.4)/Al (blue) under normal incidence. (c) and (d) are simulated angle and polarization dependent exclusive absorption spectra of a GR monolayer on an air/Al cavity under s-polarized and p-polarized incidence, respectively. (e) and (f) are simulated angle and polarization dependent exclusive absorption spectra of the bottom Al film under s-polarized and p-polarized light, respectively.
Fig. 4
Fig. 4 (a) Total absorption as the function of the spacer layer thickness and its refractive index under normal incident light at the wavelength of 400 nm modeled by Eq. (1). (b) Exclusive absorption in a GR monolayer as the function of the spacer layer thickness and its refractive index under normal incident light at the wavelength of 400 nm modeled by Eq. (3).
Fig. 5
Fig. 5 The ratio between the absolute values of the transmission coefficients between s- and p-polarized light, | t 23,s |/| t 23,p | , as the function of the wavelength and the incident angle.
Fig. 6
Fig. 6 (a) Schematic illustration of an atomic-layer photodetector structure with a suspended atomic layer on top of an air spacer/metal cavity. (b) Modeled absorption spectra of MoS2/WSe2 hybrid-monolayers on a 280-nm-thick-SiO2/Si cavity (black solid) under normal incidence, a 90-nm-thick-air/Al film (red solid) under normal incidence, a 175-nm-thick-air/Al under s-polarized (black dashed), p-polarized (red dashed) and unpolarized incidence (blue dashed) with an incident angle of 61°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A=1 | r ˜ 01 + r ˜ 12 exp( i2 β ˜ 1 )+[ r ˜ 01 r ˜ 12 +exp( i2 β ˜ 1 ) ] r ˜ 23 exp( i2 β ˜ 2 ) 1+ r ˜ 01 r ˜ 12 exp( i2 β ˜ 1 )+[ r ˜ 12 + r ˜ 01 exp( i2 β ˜ 1 ) ] r ˜ 23 exp( i2 β ˜ 2 ) | 2 .
r ˜ xy,s = n ˜ x cos θ ˜ x n ˜ y cos θ ˜ y n ˜ x cos θ ˜ x + n ˜ y cos θ ˜ y and r ˜ xy,p = n ˜ x cos θ ˜ y n ˜ y cos θ ˜ x n ˜ x cos θ ˜ y + n ˜ y cos θ ˜ x , respectively,
A GR =A A Al ,
A Al = n 3 n 0 | cos θ ˜ 3 cos θ ˜ 0 | | t ˜ 01 t ˜ 12 t ˜ 23 exp[ i( β ˜ 1 + β ˜ 2 ) ] 1+ r ˜ 01 r ˜ 12 exp( i2 β ˜ 1 )+[ r ˜ 12 + r ˜ 01 exp( i2 β ˜ 1 ) ] r ˜ 23 exp( i2 β ˜ 2 ) | 2 .
t ˜ xy,s = 2 n ˜ x cos θ ˜ y n ˜ x cos θ ˜ x + n ˜ y cos θ ˜ y and t ˜ xy,p = 2 n ˜ x cos θ ˜ x n ˜ x cos θ ˜ y + n ˜ y cos θ ˜ x , respectively.
A Al = n 3 n 0 | cos θ ˜ 3 cos θ ˜ 0 | | t ˜ 01 t ˜ 12 t ˜ 23 exp( i β ˜ 1 ) 1 r ˜ 01 2 exp( i2 β ˜ 1 ) r ˜ 01 [ 1exp( i2 β ˜ 1 ) ] r ˜ 23 exp( i2 β ˜ 2 ) | 2 .

Metrics