Abstract

A translation-reduced ion beam figuring (TRIBF) technique for five-axis ion beam figuring (IBF) plants is proposed to process large size components which cannot be processed in the traditional way. This novel technique enhances the capability of five-axis IBF plants by taking advantage of their rotation axes. The IBF kinematic model is described and the TRIBF processing technique is established by solving the motion parameters. Verification experiments are conducted on a 150 mm diameter planar mirror. This mirror was processed by TRIBF technique with only a 100 mm translation stage. The surface error was reduced from initial 10.7nm rms to 1.3nm rms within 97 minute processing time. The result indicates that the TRIBF processing technique is feasible and effective.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of continuous phase plates with small structures based on recursive frequency filtered ion beam figuring

Mingjin Xu, Yifan Dai, Xuhui Xie, Lin Zhou, and Wenqiang Peng
Opt. Express 25(10) 10765-10778 (2017)

Study on an effective one-dimensional ion-beam figuring method

Tianyi Wang, Lei Huang, Matthew Vescovi, Dennis Kuhne, Kashmira Tayabaly, Nathalie Bouet, and Mourad Idir
Opt. Express 27(11) 15368-15381 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
    [Crossref]
  2. T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
    [Crossref]
  3. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
    [Crossref]
  4. L. Zhou, Y. Dai, X. Xie, and S. Li, “Frequency-domain analysis of computer-controlled optical surfacing processes,” Sci. China Ser. E: Technol. Sci. 52(7), 2061 (2009).
    [Crossref]
  5. M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
    [Crossref]
  6. T. Franz and T. Hänsel, “IBF technology for nanomanufacturing technology,” Proc. SPIE 7655, 765513 (2010).
    [Crossref]
  7. M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).
  8. T. Haensel, A. Nickel, and A. Schindler, “Ion Beam Figuring of Strongly Curved Surfaces with a (X, Y, Z) Linear Three-Axes System,” in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.
  9. W. Liao, Y. Dai, X. Xie, and L. Zhou, “Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 1: Mathematical modeling,” Appl. Opt. 53(19), 4266–4274 (2014).
    [Crossref] [PubMed]
  10. W. Liao, Y. Dai, X. Xie, and L. Zhou, “Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 2: application,” Appl. Opt. 53(19), 4275–4281 (2014).
    [Crossref] [PubMed]
  11. L. Zhou, S. Li, W. Liao, H. Hu, Y. Dai, and X. Xie, “Ion Beam Technology: Figuring, Adding and Smoothing for High-precision Optics,” in Classical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper OM4B.4.

2014 (3)

2010 (2)

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

T. Franz and T. Hänsel, “IBF technology for nanomanufacturing technology,” Proc. SPIE 7655, 765513 (2010).
[Crossref]

2009 (2)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[Crossref]

L. Zhou, Y. Dai, X. Xie, and S. Li, “Frequency-domain analysis of computer-controlled optical surfacing processes,” Sci. China Ser. E: Technol. Sci. 52(7), 2061 (2009).
[Crossref]

1995 (2)

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[Crossref]

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Allen, L. N.

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[Crossref]

Allenstein, F.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Basso, S.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Bifano, T. G.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Citterio, O.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Civitani, M.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Dai, Y.

Demmler, M.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Drueding, T. W.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Dunger, T.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Fawcett, S. C.

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Franz, T.

T. Franz and T. Hänsel, “IBF technology for nanomanufacturing technology,” Proc. SPIE 7655, 765513 (2010).
[Crossref]

Ghigo, M.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Hänsel, T.

T. Franz and T. Hänsel, “IBF technology for nanomanufacturing technology,” Proc. SPIE 7655, 765513 (2010).
[Crossref]

Kiontke, S.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Li, S.

L. Zhou, Y. Dai, X. Xie, and S. Li, “Frequency-domain analysis of computer-controlled optical surfacing processes,” Sci. China Ser. E: Technol. Sci. 52(7), 2061 (2009).
[Crossref]

Liao, W.

Mattaini, E.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Nestler, M.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Pareschi, G.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Sironi, G.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Vecchi, G.

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[Crossref]

Xie, X.

Zeuner, M.

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

Zhou, L.

Appl. Opt. (2)

Nucl. Instrum. Methods Phys. Res. B (1)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. B 267(8–9), 1390–1393 (2009).
[Crossref]

Precis. Eng. (1)

T. W. Drueding, T. G. Bifano, and S. C. Fawcett, “Contouring algorithm for ion figuring,” Precis. Eng. 17(1), 10–21 (1995).
[Crossref]

Proc. SPIE (4)

L. N. Allen, “Progress in ion figuring large optics,” Proc. SPIE 2428, 237–247 (1995).
[Crossref]

M. Demmler, M. Zeuner, F. Allenstein, T. Dunger, M. Nestler, and S. Kiontke, “Ion beam figuring (IBF) for high precision optics,” Proc. SPIE 7591, 75910Y (2010).
[Crossref]

T. Franz and T. Hänsel, “IBF technology for nanomanufacturing technology,” Proc. SPIE 7655, 765513 (2010).
[Crossref]

M. Ghigo, G. Vecchi, S. Basso, O. Citterio, M. Civitani, E. Mattaini, G. Pareschi, and G. Sironi, “Ion figuring of large prototype mirror segments for the E-ELT,” Proc. SPIE 9151, 91510Q (2014).

Sci. China Ser. E: Technol. Sci. (1)

L. Zhou, Y. Dai, X. Xie, and S. Li, “Frequency-domain analysis of computer-controlled optical surfacing processes,” Sci. China Ser. E: Technol. Sci. 52(7), 2061 (2009).
[Crossref]

Other (2)

T. Haensel, A. Nickel, and A. Schindler, “Ion Beam Figuring of Strongly Curved Surfaces with a (X, Y, Z) Linear Three-Axes System,” in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWD6.

L. Zhou, S. Li, W. Liao, H. Hu, Y. Dai, and X. Xie, “Ion Beam Technology: Figuring, Adding and Smoothing for High-precision Optics,” in Classical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper OM4B.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Multi-axis motion mechanism topology of a typical FIBFP. 0-Base; 1- X axis; 2- Y axis; 3- Z axis; 4- A axis; 5- B axis; 6- ion source; 7- Optical component.
Fig. 2
Fig. 2 Coordinate frames and machining points in FIBF process ( O w X w Y w Z w is the workpiece coordinate frame and P is the machining point, O X m Y m Z m is machine coordinate frame and P’ is the correspond point the ion source should be moved to when bombarding point P).
Fig. 3
Fig. 3 Schematic diagram of TRIBF technique (P’ is the position where the ion source needs to be moved to when machining the point P in the traditional FIBF, while P” is the new motion position in the TRIBF technique).
Fig. 4
Fig. 4 Result of removal function test. (a) Surface figure after test. (b) Central section line of extracted RF.
Fig. 5
Fig. 5 (a) In TRIBF process, different regions require different link motion axes. Region I requires only XY axes, Region II requires XYZA axes, region III requires XYZB axes and region IV requires XYZAB axes. (b) The incident angle ϕ(x,y) on the mirror surface.
Fig. 6
Fig. 6 Experimental results. (a) Initial surface error. (b) Surface error after the 1st TRIBF run. (c) Surface error after the 2nd TRIBF run. (d) Simulation result.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ α= tan 1 ( n y n z ) β= sin 1 n x ,
{ x= x w lsinβ y= y w +lsinαcosβ z= z w +l( 1cosαcosβ ) .
{ x= x w l n x y= y w l n y z= z w +ll n z .
x={ X 1 , x 0 < X 1 x 0 , X 1 x 0 X 2 X 2 , x 0 > X 2 ,
y={ Y 1 , y 0 < Y 1 y 0 , Y 1 y 0 Y 2 Y 2 , y 0 > Y 2 .
β= sin 1 [ ( x w x ) /l ].
α= sin 1 [ ( y y w ) / ( lcosβ ) ].
z= z w +l( 1cosαcosβ ).
ϕ= cos 1 [ cos( α α 0 )cos( β β 0 ) ].
l= D1+D2 4×tan5° =247.5mm.
ϕ= cos 1 ( cosαcosβ ).
X 1 lsin β max x w X 2 +lsin β max .

Metrics