Abstract

It has been demonstrated that an ultrathin uniformly corrugated metallic strip is a good plasmonic waveguide in microwave and terahertz frequencies to propagate spoof surface plasmon polaritons (SPPs) with well confinement and small loss (Shen et al., PNAS 110, 40-45, 2013). Here, we propose a simple method to trap SPP waves on the ultrathin corrugated metallic strips in broad band in the microwave frequencies. By properly designing non-uniform corrugations with gradient-depth grooves, we show that the SPP waves are slowed down gradually and then reflected at pre-designed positions along the ultrathin metallic strip when the frequency varies. We design and fabricate the ultrathin gradient-corrugation metallic strip on a thin dielectric film. Both numerical simulation and measurement results validate the efficient trapping of SPP waves in broadband from 9 to 14 GHz. This proposal is a promising candidate for slow-wave devices in both microwave and terahertz regimes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material

Yan Liu, Yibo Wang, Genquan Han, Yao Shao, Cizhe Fang, Siqing Zhang, Yan Huang, Jincheng Zhang, and Yue Hao
Opt. Express 25(2) 1278-1287 (2017)

High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies

Dawei Zhang, Kuang Zhang, Qun Wu, Xumin Ding, and Xuejun Sha
Opt. Express 25(3) 2121-2129 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [Crossref]
  2. K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001).
    [Crossref]
  3. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  4. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
    [Crossref] [PubMed]
  5. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
    [Crossref]
  6. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
    [Crossref]
  7. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [Crossref] [PubMed]
  8. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  9. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
    [Crossref] [PubMed]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  11. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
    [Crossref]
  12. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
    [Crossref]
  13. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [Crossref] [PubMed]
  14. W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
    [Crossref] [PubMed]
  15. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
    [Crossref] [PubMed]
  16. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  17. S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
    [Crossref] [PubMed]
  18. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
    [Crossref] [PubMed]
  19. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  20. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  21. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
    [Crossref]
  22. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  23. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
    [Crossref]
  24. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
    [Crossref]
  25. B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
    [Crossref] [PubMed]
  26. Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
    [Crossref]
  27. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  28. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  29. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  30. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  31. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
    [Crossref]
  32. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [PubMed]
  33. Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
    [Crossref]
  34. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
    [Crossref]
  35. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
  36. Z. Liao, B. C. Pan, X. P. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  37. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2014 (7)

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[PubMed]

Z. Liao, B. C. Pan, X. P. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

2013 (4)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

2012 (2)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref] [PubMed]

2011 (4)

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[Crossref]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

2010 (4)

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
[Crossref] [PubMed]

2009 (3)

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

2008 (3)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
[Crossref] [PubMed]

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

2006 (2)

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (3)

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2001 (2)

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Aryal, D. P.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Bai, W.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Banyal, R. K.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Cai, L.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Casse, B. D. F.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

Chen, L.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Cui, T. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[PubMed]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. P. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[Crossref]

Ding, Y. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Engelen, R. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q. Q.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gersen, H.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

He, S.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref] [PubMed]

B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
[Crossref] [PubMed]

He, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Huang, Y. J.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Jamois, C.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Jin, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref] [PubMed]

B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
[Crossref] [PubMed]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Kildishev, A. V.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

Kim, K.-Y.

Klaedtke, A.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Lawandy, N. M.

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001).
[Crossref]

Lee, B.

Lee, I.-M.

Lee, K.

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001).
[Crossref]

Lee, S.-Y.

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Liao, Z.

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[PubMed]

Z. Liao, B. C. Pan, X. P. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Lu, W. T.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Ma, H. F.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martin-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Na, H.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, B. C.

Park, J.

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Shalaev, V. M.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. P. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Smolyaninov, I. I.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

Smolyaninova, V. N.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

Song, G.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Sridharb, S.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Wang, B.

Wang, G. P.

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Wu, J. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Xu, Y.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Yang, T. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

Zhao, J.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[PubMed]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhou, Y. J.

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed hetero structures,” Appl. Phys. Lett. 89(20), 201103 (2006).
[Crossref]

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010).
[Crossref]

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001).
[Crossref]

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[Crossref]

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[Crossref]

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D Appl. Phys. (2)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Laser Photon. Rev. (2)

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photon. Rev. 8(1), 137–145 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Photonics (1)

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Nature (2)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped Rainbow’ Storage of Light in Metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Phys. Rev. Lett. (4)

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-Space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Proc. Natl. Acad. Sci. U.S.A. (2)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Rep. 2, 583 (2012).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Ultrathin non-uniform corrugated metallic strip that can trap SPP waves in broadband. (a) The sketch of the ultrathin non-uniform corrugated metallic strip with gradient groove depth. Here, the period p = 5mm, the strip width h = 8mm, the groove width a = 2mm, and the groove depth d increases from 4mm to 7mm with step Δd = 0.075mm. The length of the whole metallic strip is 200mm with 40 periods. (b) The photography of the ultrathin non-uniform corrugated metallic strip. Here, the thickness of the metallic strip is 0.018mm, which is printed on a very thin and flexible dielectric film with thickness of 0.0255mm and dielectric constant Ɛ = 3.0.
Fig. 2
Fig. 2 The dispersion property and group velocity of the ultrathin corrugated metallic strip. (a) Dispersion curves of the ultrathin corrugated metallic strip at different groove depths varying from 4mm to 7mm at a step of 1mm. in which the black curve is the light line. The circles show the dispersion dots of the structure when slot depth d = 4mm, and the copper is treated as lossy metal with conductivity σ=5.8× 10 7 s/m . (b) Group velocities vg of the spoof SPPs on the ultrathin corrugated metallic strip at different depths. With the increase of depth, the group velocity decreases and drops quickly at different positions for different frequencies.
Fig. 3
Fig. 3 Numerical simulation results of the spoof SPPs propagating on the ultrathin corrugated metallic strip. The left panels (a-e) and right panels (f-j) represent the transient-field and magnitude distributions of electric fields at different frequencies 9.0, 9.5, 10.0, 10.5, and 11.0 GHz, respectively.
Fig. 4
Fig. 4 Experiment results of the spoof SPPs propagating on the ultrathin corrugated metallic strip. The left panels (a-e) and right panels (f-j) represent the transient-field and magnitude distributions of electric fields at different frequencies 9.0, 9.5, 10.0, 10.5, and 11.0 GHz, respectively.
Fig. 5
Fig. 5 The numerical simulation and experiment results of the |Ez| distributions along the x axis for different frequencies. (a) Numerical simulations. (b) Experiment results.

Metrics