Abstract

A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber

Junqi Guo, Yan-ge Liu, Zhi Wang, Tingting Han, Wei Huang, and Mingming Luo
Opt. Express 22(7) 7607-7616 (2014)

Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter

B. M. Younis, A. M. Heikal, Mohamed Farhat O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 35(5) 1020-1029 (2018)

Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance

Jianrong Xue, Shuguang Li, Yuzhe Xiao, Wei Qin, Xujun Xin, and Xingping Zhu
Opt. Express 21(11) 13733-13740 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
    [Crossref] [PubMed]
  2. M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron. 47(10), 1283–1290 (2011).
    [Crossref]
  3. A. M. Heikal, M. F. O. Hameed, and S. S. A. Obayya, “Improved trenched channel plasmonic waveguide,” J. Lightwave Technol. 31(13), 2184–2191 (2013).
    [Crossref]
  4. B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
    [Crossref]
  5. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett. 32(9), 1035–1037 (2007).
    [Crossref] [PubMed]
  6. Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
    [Crossref] [PubMed]
  7. X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
    [Crossref]
  8. W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett. 36(16), 3296–3298 (2011).
    [Crossref] [PubMed]
  9. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
    [Crossref] [PubMed]
  10. W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
  11. M. A. Schmidt and P. St. J. Russell, “Long-range spiraling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [Crossref] [PubMed]
  12. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. P. Sempere, and P. St. J. Russell, “Transmission properties of selectively gold-filled polarization-maintaining PCF,” Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS), paper CFO3 (2008).
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [Crossref]
  14. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
    [Crossref] [PubMed]
  15. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref] [PubMed]
  16. S. S. A. Obayya, Computational Photonics (John Wiley & Sons, 2011).
  17. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19(4), 3799–3808 (2011).
    [Crossref] [PubMed]
  18. J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
    [Crossref] [PubMed]
  19. M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [Crossref]
  20. S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).
  21. C. Kalnins, H. Ebendorff-Heidepriem, N. Spooner, and T. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express 2(1), 62–70 (2012).
    [Crossref]
  22. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [Crossref] [PubMed]
  23. C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am. 64(11), 1424–1432 (1974).
    [Crossref]
  24. M. Green and S. J. Madden, “Low loss nematic liquid crystal cored fiber waveguides,” Appl. Opt. 28(24), 5202–5203 (1989).
    [Crossref] [PubMed]

2013 (3)

2012 (2)

2011 (4)

M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron. 47(10), 1283–1290 (2011).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19(4), 3799–3808 (2011).
[Crossref] [PubMed]

W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett. 36(16), 3296–3298 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).

2008 (3)

2007 (2)

2005 (2)

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

2004 (1)

1997 (1)

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

1989 (1)

1974 (1)

Alam, M. S.

S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).

Alkeskjold, T.

Alkeskjold, T. T.

W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Anawati, A.

Bagratashvili, V. N.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Bassi, P.

Bjarklev, A.

W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[Crossref] [PubMed]

T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[Crossref] [PubMed]

Borelli, E.

Broeng, J.

Chan, C. C.

Cox, F. M.

Das, S.

S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).

de Sandro, J. P.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Dong, L.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Dutta, A. J.

S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).

Ebendorff-Heidepriem, H.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Green, M.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Hameed, M. F. O.

A. M. Heikal, M. F. O. Hameed, and S. S. A. Obayya, “Improved trenched channel plasmonic waveguide,” J. Lightwave Technol. 31(13), 2184–2191 (2013).
[Crossref]

M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron. 47(10), 1283–1290 (2011).
[Crossref]

Han, T.

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Heikal, A. M.

Hermann, D.

Hu, C.

Jin, W.

Joly, N.

Kalnins, C.

Koshiba, M.

Kuhlmey, B. T.

Laegsgaard, J.

Lægsgaard, J.

Laming, R. I.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Large, M. C. J.

Lee, H. W.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Lei, W.

W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).

Li, J.

Li, S.

Liu, S.

Liu, W. F.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Liu, Y.

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Madden, S. J.

Monro, T.

Nagasaki, A.

Nielsen, M.

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[Crossref] [PubMed]

Noordegraaf, D.

Obayya, S. S. A.

A. M. Heikal, M. F. O. Hameed, and S. S. A. Obayya, “Improved trenched channel plasmonic waveguide,” J. Lightwave Technol. 31(13), 2184–2191 (2013).
[Crossref]

M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron. 47(10), 1283–1290 (2011).
[Crossref]

Ortega, B.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Patwary, N.

S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).

Qian, W.

Qin, W.

Reekie, L.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[Crossref] [PubMed]

Russell, P. S. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Russell, P. St. J.

Saitoh, K.

Scharrer, M.

Schmidt, M. A.

Scolari, L.

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Spooner, N.

Tai, B.

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Tanggaard Alkeskjold, T.

Tartarini, G.

Tsypina, S. I.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

Tyagi, H. K.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Uebel, P.

Wang, D. N.

Wang, R.

Wang, Y.

Wang, Z.

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Whinnery, J. R.

Wu, S. T.

Xiao, L.

Xiao, Y.

Xin, X.

Xue, J.

Yan, Z.

Zhang, L.

Zhang, X.

Zhao, C. L.

Zheng, X.

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Zhou, K.

Zhu, X.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron. 47(10), 1283–1290 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (4)

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

W. Lei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).

M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (1)

The AUST Journal of Science and Technology (1)

S. Das, A. J. Dutta, N. Patwary, and M. S. Alam, “Characteristic analysis of polarization and dispersion properties of PANDA fiber using finite element methods,” The AUST Journal of Science and Technology 3(2), 3–8 (2013).

Other (2)

S. S. A. Obayya, Computational Photonics (John Wiley & Sons, 2011).

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. P. Sempere, and P. St. J. Russell, “Transmission properties of selectively gold-filled polarization-maintaining PCF,” Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS), paper CFO3 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross section of the PLC-PCF filter filled with a metal wire and sandwiched between two electrodes.
Fig. 2
Fig. 2 Contour lines of electric potential (V) (horizontal gray solid lines) and normalized arrow surface of E-field distribution (vertical red arrows) across the proposed structure
Fig. 3
Fig. 3 Wavelength dependence of effective indices of (a) x-polarized core mode and surface plasmon ( S P 0 , S P 1 , S P 2 , S P 3 and S P 4 ) modes. (b) y-polarized core mode and surface plasmon ( S P 0 , S P 1 , S P 2 , S P 3 and S P 4 ) modes. Points A, B and C are the intersection points of the x-polarized core mode dispersion curve with the S P 2 , S P 3 and S P 4 modes dispersion curves, respectively, while T=25 °C and φ= 90 o .
Fig. 4
Fig. 4 Loss spectrum (in log scale) for the x-polarized and y-polarized core modes at T=25 °C , and φ= 90 o . Points A, B and C are the equivalent points to the resonance wavelengths shown in Fig. 3 (a).
Fig. 5
Fig. 5 Field plots of x and y polarized core modes at different wavelengths (a) before resonance at 900 nm , (b) at resonance at λ=1162 nm and (c) after resonance at λ=1300 nm .
Fig. 6
Fig. 6 Variation of the attenuation losses of the two fundamental polarized modes at φ= 90 o and φ= 0 o while the temperature is fixed at T=25 °C . The molecules directions related to the rotation angle are shown in the inset figure.
Fig. 7
Fig. 7 Variation of attenuation losses of the two fundamental polarized core modes at different temperatures while the rotation angle φ is fixed at 90 o
Fig. 8
Fig. 8 Variation of the wavelength dependent attenuation losses of the two fundamental core modes (x-polarized and y-polarized mode) at different air hole diameters ( d 2 ), 1.6 μm, 2 μm and 2.4 μm while d c =2 μm , d 2 =3.4 μm , T=25 °C , and φ= 90 o .
Fig. 9
Fig. 9 Variation of attenuation losses of the two fundamental core modes (x-polarized and y-polarized mode) with the metal wire diameter ( d c )while d 1 , d 2 ,T, and φ are taken as 2 μm , 3.4 μm , 25 °C and 90 ° , respectively.
Fig. 10
Fig. 10 Variation of attenuation losses of the two fundamental core modes (x-polarized and y-polarized mode) with the NLC central hole diameter ( d 2 ) while d 1 , d 2 ,T, and φ are taken as 2 μm , 2 μm , 25 °C and 90 ° , respectively.
Fig. 11
Fig. 11 Variation of the attenuation losses of the x-polarized core mode of the PLC-PCF with one and two metal wires with the wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε r =( n o 2 sin 2 φ+ n e 2 cos 2 φ ( n e 2 n o 2 )sinφcosφ 0 ( n e 2 n o 2 )sinφcosφ n o 2 cos 2 φ+ n e 2 sin 2 φ 0 0 0 n o 2 )
n e = A e +( B e λ 2 )+( C e λ 4 ) n o = A o +( B o λ 2 )+( C o λ 4 )
n 2 ( λ )=1+ A 1 λ 2 λ 2 B 1 + A 2 λ 2 λ 2 B 2 + A 3 λ 2 λ 2 B 3
ε Au ( ω )= ε ω p 2 ω( ω+i ω τ )

Metrics