Abstract

We investigate the use of an arbitrary waveform generator to phase-modulate a laser source and externally broaden its linewidth. Through nonlinear optimization in a computer, we find modulation signals that produce top-hat-shaped optical spectra of discrete lines with highest total power within a limited bandwidth and limited peak spectral power density. The required modulation bandwidth is comparable to the targeted optical bandwidth. Such spectra are attractive for suppressing stimulated Brillouin scattering in optical fiber. Experimentally, we generate 15 lines in a 0.5 GHz optical linewidth. However, the method can also be used to generate other optical spectra.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of stimulated Brillouin scattering in high power fibers using nonlinear phase demodulation

Gregory D. Goodno and Joshua E. Rothenberg
Opt. Express 27(9) 13129-13141 (2019)

Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion

Steve Hocquet, Denis Penninckx, Jean-François Gleyze, Claude Gouédard, and Yves Jaouën
Appl. Opt. 49(7) 1104-1115 (2010)

Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers

J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. Chavez Boggio, P.A. Andrekson, M. Karlsson, and S. Radic
Opt. Express 18(17) 18138-18150 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref] [PubMed]
  2. A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, “100-W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
    [Crossref] [PubMed]
  3. T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
    [Crossref]
  4. S. Yoo, C. Codemard, Y. Jeong, J. Sahu, and J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49, 1388–1399 (2010).
    [Crossref] [PubMed]
  5. F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).
  6. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
    [Crossref] [PubMed]
  7. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
    [Crossref]
  8. Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium co-doped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
    [Crossref] [PubMed]
  9. G. Goodno, S. McNaught, J. Rothenberg, T. McComb, P. Thielen, M. Wickham, and M. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35, 1542–1544 (2010).
    [Crossref] [PubMed]
  10. C. Yu, S. Augst, S. Redmond, K. Goldizen, D. Murphy, A. Sanchez, and T. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36, 2686–2688 (2011).
    [Crossref] [PubMed]
  11. Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
    [Crossref]
  12. A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
    [Crossref]
  13. V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
    [Crossref]
  14. C. Zeringue, I. Dajani, S. Naderi, G. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
    [Crossref] [PubMed]
  15. S. Hocquet, D. Penninckx, J-F. Gleyze, C. Gouedard, and Y. Jaouen, “Nonsinusoidal phase modulations for high-power laser performance control : stimulated Brillouin scattering and FM-to-AM conversion,” Appl. Opt. 49(7), 1104–1115 (2010).
    [Crossref] [PubMed]
  16. Y. Liu, Z. Lu, Y. Dong, and Q. Li, “Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation,” Chin. Opt. Lett. 7, 29–31 (2009).
    [Crossref]
  17. C. Dorrer, “Spectral and temporal properties of optical signals with multiple sinusoidal phase modulations,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu3F.5.
  18. J. C. Mauro, S. Raghavan, and A. Ruffin, “Enhanced stimulated brillouin scattering threshold through phase control of multitone phase modulation,” Opt. Eng. 0001  49(10), 100501 (2010).
    [Crossref]
  19. J. Coles, B. Kuo, N. Alic, S. Moro, C. Bres, J. Boggio, P. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
    [Crossref] [PubMed]
  20. S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
    [Crossref]
  21. C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
    [Crossref]
  22. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.
  23. H. Achar Vasant and J. Nilsson, “Arbitrary Phase Modulation for Optical Spectral Control and Suppression of Stimulated Brillouin Scattering,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.47.
    [Crossref]
  24. W. Wei, L. Yi, Y. Jaoun, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
    [Crossref] [PubMed]
  25. T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process. 43(6), 1502–1503 (1995).
    [Crossref]
  26. A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems (Prentice-Hall, 1983).
  27. S. Lin and B. W. Kernighan, “An effective heuristic for travelling-salesman problem,” Oper. Res. 21, 498–516 (1973).
    [Crossref]
  28. D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
    [Crossref]
  29. Y. Dong, Z. Lu, Q. Li, and Y. Liu, “Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers,” J. Opt. Soc. Am. B 25, C109–C115 (2008).
    [Crossref]

2014 (1)

2013 (1)

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (6)

2009 (1)

2008 (1)

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

2006 (1)

T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

2005 (2)

2003 (2)

2000 (1)

V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
[Crossref]

1995 (1)

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process. 43(6), 1502–1503 (1995).
[Crossref]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

1973 (1)

S. Lin and B. W. Kernighan, “An effective heuristic for travelling-salesman problem,” Oper. Res. 21, 498–516 (1973).
[Crossref]

1972 (1)

Achar Vasant, H.

H. Achar Vasant and J. Nilsson, “Arbitrary Phase Modulation for Optical Spectral Control and Suppression of Stimulated Brillouin Scattering,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.47.
[Crossref]

Alegria, C.

Alic, N.

Alvarez-Chavez, J. A.

Andrekson, P.

Andrekson, P. A.

T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Aragon, C.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
[Crossref]

Augst, S.

Boggio, J.

Boyland, A. J.

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Bres, C.

Chryssou, J.

Codemard, C.

Codemard, C. A.

Coles, J.

Dajani, I.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

C. Zeringue, I. Dajani, S. Naderi, G. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
[Crossref] [PubMed]

Dong, Y.

Dorrer, C.

C. Dorrer, “Spectral and temporal properties of optical signals with multiple sinusoidal phase modulations,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu3F.5.

Dupriez, P.

Eskildsen, L.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.

Fan, T.

Flores, A.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

Gleyze, J-F.

Goldizen, K.

Goodno, G.

Gouedard, C.

Hansen, P. B.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.

Harrison, R. G.

V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
[Crossref]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Hocquet, S.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Hu, W.

Jaouen, Y.

Jaoun, Y.

Jeong, Y.

Johnson, D.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
[Crossref]

Karlsson, M.

Kernighan, B. W.

S. Lin and B. W. Kernighan, “An effective heuristic for travelling-salesman problem,” Oper. Res. 21, 498–516 (1973).
[Crossref]

Korotky, S. K.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.

Kovalev, V. I.

V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
[Crossref]

Kuo, B.

Lanari, A.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

Le Parquier, M.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[Crossref]

Li, Q.

Liem, A.

Limpert, J.

Lin, S.

S. Lin and B. W. Kernighan, “An effective heuristic for travelling-salesman problem,” Oper. Res. 21, 498–516 (1973).
[Crossref]

Liu, Y.

Lu, Z.

Mauro, J. C.

J. C. Mauro, S. Raghavan, and A. Ruffin, “Enhanced stimulated brillouin scattering threshold through phase control of multitone phase modulation,” Opt. Eng. 0001  49(10), 100501 (2010).
[Crossref]

McComb, T.

McGeoch, L.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
[Crossref]

McKinstrie, C. J.

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

McNaught, S.

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Moore, G.

Moro, S.

Mountfort, F. H.

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Murphy, D.

Mussot, A.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[Crossref]

Naderi, S.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

C. Zeringue, I. Dajani, S. Naderi, G. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
[Crossref] [PubMed]

Nilsson, J.

S. Yoo, C. Codemard, Y. Jeong, J. Sahu, and J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49, 1388–1399 (2010).
[Crossref] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium co-doped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
[Crossref] [PubMed]

H. Achar Vasant and J. Nilsson, “Arbitrary Phase Modulation for Optical Spectral Control and Suppression of Stimulated Brillouin Scattering,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.47.
[Crossref]

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Olsson, B.

T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems (Prentice-Hall, 1983).

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Penninckx, D.

Pulford, B.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

Radic, S.

Raghavan, S.

J. C. Mauro, S. Raghavan, and A. Ruffin, “Enhanced stimulated brillouin scattering threshold through phase control of multitone phase modulation,” Opt. Eng. 0001  49(10), 100501 (2010).
[Crossref]

Redmond, S.

Robin, C.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

C. Zeringue, I. Dajani, S. Naderi, G. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
[Crossref] [PubMed]

Rothenberg, J.

Ruffin, A.

J. C. Mauro, S. Raghavan, and A. Ruffin, “Enhanced stimulated brillouin scattering threshold through phase control of multitone phase modulation,” Opt. Eng. 0001  49(10), 100501 (2010).
[Crossref]

Sahu, J.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium co-doped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997–2999 (2005).
[Crossref] [PubMed]

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Sanchez, A.

Schanze, T.

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process. 43(6), 1502–1503 (1995).
[Crossref]

Schevon, C.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
[Crossref]

Scott, A. M.

V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
[Crossref]

Smith, R.

Soh, D. B.

Soh, D. B. S.

Szriftgiser, P.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[Crossref]

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

Thielen, P.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Tunnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, J. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency single-mode plane-polarized ytterbium-doped fiber master-oscillator power amplifier source with 264 W output power,” Opt. Lett. 30, 459–461 (2005).
[Crossref] [PubMed]

Veselka, J. J.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.

Wanzcyk, L.

Webb, A. S.

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Weber, M.

Wei, W.

Wickham, M.

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems (Prentice-Hall, 1983).

Yi, L.

Yoo, S.

S. Yoo, C. Codemard, Y. Jeong, J. Sahu, and J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49, 1388–1399 (2010).
[Crossref] [PubMed]

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

Young, I. T.

A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems (Prentice-Hall, 1983).

Yu, C.

Zellmer, H.

Zeringue, C.

Zernigue, C.

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron 13, 546–551 (2007) (invited).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Torounidis, P. A. Andrekson, and B. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

IEEE Trans. Signal Process. (1)

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process. 43(6), 1502–1503 (1995).
[Crossref]

J. Lightwave Technol. (1)

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Oper. Res. (1)

S. Lin and B. W. Kernighan, “An effective heuristic for travelling-salesman problem,” Oper. Res. 21, 498–516 (1973).
[Crossref]

Opt. Commun. (2)

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[Crossref]

V. I. Kovalev, R. G. Harrison, and A. M. Scott, “The build-up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre,” Opt. Commun. 185(13), 185–189 (2000).
[Crossref]

Opt. Eng. (1)

J. C. Mauro, S. Raghavan, and A. Ruffin, “Enhanced stimulated brillouin scattering threshold through phase control of multitone phase modulation,” Opt. Eng. 0001  49(10), 100501 (2010).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (1)

C. Robin, I. Dajani, C. Zernigue, A. Flores, B. Pulford, A. Lanari, and S. Naderi, “Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers,” Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010Z (2013).
[Crossref]

Other (6)

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing Stimulated Brillouin scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm. vol 1, paper WD2-1 (1995), pp. 110–111.

H. Achar Vasant and J. Nilsson, “Arbitrary Phase Modulation for Optical Spectral Control and Suppression of Stimulated Brillouin Scattering,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.47.
[Crossref]

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optmization by simulated annealing : An experimental evaluation; part I, graph partitioning,” Oper. Res.37(6) (1989).
[Crossref]

A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems (Prentice-Hall, 1983).

F. H. Mountfort, S. Yoo, A. J. Boyland, A. S. Webb, J. Nilsson, and J. K. Sahu, “Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers,” CLEO Europe, Munich, Germany, paper CE.P.23 (2011).

C. Dorrer, “Spectral and temporal properties of optical signals with multiple sinusoidal phase modulations,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu3F.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Block diagram for linewidth broadening of single-frequency laser with optimized waveform generated by arbitrary waveform generator.
Fig. 2
Fig. 2 Target spectrum showing 29 spectral lines indicating lines within and outside the target bandwidth as used in Eq. (1).
Fig. 3
Fig. 3 (a) Optimized phase samples with 56 points and simulated reconstruction of continuous waveform with a period of 28.57 ns and (b) Simulation of linewidth broadening over 1 GHz in 29 spectral lines of nearly equal power.
Fig. 4
Fig. 4 Cost function as given by Eq. (1) plotted against the iteration number during the optimization corresponding to Fig. 3.
Fig. 5
Fig. 5 Fourier transform of the optimized waveform in Fig. 3(a).
Fig. 6
Fig. 6 Optical spectrum calculated when 42 and 28 samples are optimized to demonstrate lower modulation bandwidth performance compared to Fig. 3.
Fig. 7
Fig. 7 Simulated spectra with 127 and 511 target lines generated using optimized waveforms.
Fig. 8
Fig. 8 Comparison of simulated spectra achieved with three sine-wave generators and with an AWG. The ideal (target) spectrum is shown, too.
Fig. 9
Fig. 9 (a) Optimized modulation waveforms as simulated and experimentally realized in an AWG and (b) corresponding simulated optical spectrum when phase-modulated with the optimized simulated waveform.
Fig. 10
Fig. 10 a) Top-hat shaped spectrum captured in ESA when lightwave was phase modulated with waveform in Fig. 9(a) generated by AWG b) plot of backscattered SBS power from a passive optical fiber against the input Brillouin pump power which is phase modulated with proposed method compared with sinusoidal phase modulation and no phase modulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Cost function = k N i ( P target P central k ) 2 W k k N o P outside k

Metrics