Abstract

We numerically investigate mid-infrared supercontinuum (SC) generation in dispersion-engineered, air-clad, Ge11.5As24Se64.5 chalcogenide-glass channel waveguides employing two different materials, Ge11.5As24S64.5 or MgF2 glass for their lower cladding. We study the effect of waveguide parameters on the bandwidth of the SC at the output of 1-cm-long waveguide. Our results show that output can vary over a wide range depending on its design and the pump wavelength employed. At the pump wavelength of 2 μm the SC never extended beyond 4.5 μm for any of our designs. However, supercontinuum could be extended to beyond 5 μm for a pump wavelength of 3.1 μm. A broadband SC spanning from 2 μm to 6 μm and extending over 1.5 octave could be generated with a moderate peak power of 500 W at a pump wavelength of 3.1 μm using an air-clad, all-chalcogenide, channel waveguide. We show that SC can be extended even further when MgF2 glass is used for the lower cladding of chalcogenide waveguide. Our numerical simulations produced SC spectra covering the wavelength range 1.8–7.7 μm (> two octaves) by using this geometry. Both ranges exceed the broadest SC bandwidths reported so far. Moreover, we realize it using 3.1 μm pump source and relatively low peak power pulses. By employing the same pump source, we show that SC spectra can cover a wavelength range of 1.8–11 μm (> 2.5 octaves) in a channel waveguide employing MgF2 glass for its lower cladding with a moderate peak power of 3000 W.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal
Opt. Express 22(25) 31029-31040 (2014)

Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm

Xin Gai, Steve Madden, Duk-Yong Choi, Douglas Bulla, and Barry Luther-Davies
Opt. Express 18(18) 18866-18874 (2010)

Ultra broadband mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis

A. G. N. Chaitanya, Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(36) 10138-10145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
    [Crossref] [PubMed]
  2. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
    [Crossref] [PubMed]
  3. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).
  4. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  5. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [Crossref] [PubMed]
  6. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [Crossref] [PubMed]
  7. M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
    [Crossref] [PubMed]
  8. M. R. Karim, B. M. A. Rahman, and G.P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
    [Crossref]
  9. D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
    [Crossref]
  10. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref]
  11. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [Crossref] [PubMed]
  12. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [Crossref] [PubMed]
  13. X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
    [Crossref] [PubMed]
  14. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
    [Crossref]
  15. Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
    [Crossref]
  16. R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, “Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers,” Opt. Express 18(25), 26666–26674 (2010).
    [Crossref] [PubMed]
  17. L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914 (79140P), 1–5 (2011).
  18. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
    [Crossref] [PubMed]
  19. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulphide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref] [PubMed]
  20. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref] [PubMed]
  21. N. Granzow, M.A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3 “nano-spike” step index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]
  22. C. Wei, X. Zhu, R. A. Norwood, F. Seng, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21(24), 29488–29504 (2013).
    [Crossref]
  23. I. Kubat, C. R. Petersen, U. V. Moller, A. B. Seddon, T. M. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref] [PubMed]
  24. I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref] [PubMed]
  25. D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
    [Crossref] [PubMed]
  26. A. Al-Kadry, M. E. Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22(25), 31131–31137 (2014).
    [Crossref]
  27. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  28. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref]
  29. J. H. Kim, M. Chen, C. Yang, J. Lee, S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
    [Crossref] [PubMed]
  30. B. Kuyken, X Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
    [Crossref] [PubMed]
  31. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  32. M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).
  33. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).
  34. M. Bass, G. Li, and E. V. Stryland, Hand Book of Optics Vol-IV3rd ed. (The McGraw-Hill, New York, 2010).
  35. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [Crossref] [PubMed]
  36. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [Crossref] [PubMed]
  37. G. P. Agrawal, Nonlinear Fiber Optics5th ed. (Academic, San Diego, California, 2013).
  38. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
    [Crossref]
  39. J. Andreasen, A. Bhal, and M. Kolesik, “Spatial effects in supercontinuum generation in waveguides,” Opt. Express 22(21), 25756–25767 (2014).
    [Crossref] [PubMed]
  40. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27(12), 2095–2099, (2009).
    [Crossref]
  41. C. Chaudhari, M. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications,” J. Lightwave Technol. 30(13), 2069–2076, (2012).
    [Crossref]
  42. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
    [Crossref]
  43. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
    [Crossref] [PubMed]
  44. B. M. A. Rahman and J. B. Davies, “Vector-H finite element solution of GaAs/GaAlAs rib waveguides,” proceedings of IEE 132(6), 349–353 (1985).
  45. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
    [Crossref]
  46. D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
    [Crossref] [PubMed]
  47. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
    [Crossref]

2015 (1)

2014 (8)

I. Kubat, C. R. Petersen, U. V. Moller, A. B. Seddon, T. M. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

J. Andreasen, A. Bhal, and M. Kolesik, “Spatial effects in supercontinuum generation in waveguides,” Opt. Express 22(21), 25756–25767 (2014).
[Crossref] [PubMed]

M. R. Karim, B. M. A. Rahman, and G.P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
[Crossref]

A. Al-Kadry, M. E. Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22(25), 31131–31137 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

2013 (6)

2012 (6)

C. Chaudhari, M. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications,” J. Lightwave Technol. 30(13), 2069–2076, (2012).
[Crossref]

X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulphide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

2011 (6)

2010 (4)

2009 (3)

2008 (3)

2007 (2)

2004 (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

2003 (1)

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

1985 (1)

B. M. A. Rahman and J. B. Davies, “Vector-H finite element solution of GaAs/GaAlAs rib waveguides,” proceedings of IEE 132(6), 349–353 (1985).

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Abdel-Moneim, M.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Aggarwal, I. D.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914 (79140P), 1–5 (2011).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
[Crossref] [PubMed]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Agger, C. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics5th ed. (Academic, San Diego, California, 2013).

Agrawal, G.P.

Alexander, V. V.

Al-Kadry, A.

Amraoui, M. E.

Anashkina, E. A.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

Andreasen, J.

Andrianov, A. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Baets, R.

Bang, O.

Bass, M.

M. Bass, G. Li, and E. V. Stryland, Hand Book of Optics Vol-IV3rd ed. (The McGraw-Hill, New York, 2010).

Baudisch, M.

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Benson, T. M.

Bhal, A.

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

Biegert, J.

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Bony, P. Y.

Brantley, C.

Brilland, L.

Bulla, D.

Bulla, D. A.

Byer, R. L.

Caillaud, C.

Chan, A.

Chang, W.

Chaudhari, C.

Chen, M.

Cheng, T.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

Choi, D.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Choi, D. Y.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Coulombier, Q.

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Vector-H finite element solution of GaAs/GaAlAs rib waveguides,” proceedings of IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Debbarma, S.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Dekker, S. A.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

Deng, D.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

Desevedavy, F.

Dianov, E. M.

Docherty, A.

Duan, Z.

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Edwards, E.

Eggleton, B. J.

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[Crossref] [PubMed]

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Farries, M.

Fatome, J.

Fermann, M. E.

Freeman, M. J.

Fu, L.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Gao, W.

Gattass, R. R.

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914 (79140P), 1–5 (2011).

Granzow, N.

Green, W. M. J.

Han, T.

Hartl, I.

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Hu, J.

Hudson, D. D.

Islam, M. N.

Jackson, S. D.

Judge, A. C.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

Jules, J. C.

Karim, M. R.

Kawashima, H.

Kibler, B.

Kim, A. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

Kim, J. H.

Knight, J. C.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Kohoutek, T.

Kolesik, M.

Koptev, M. Y.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

Kubat, I.

Kulkarni, O. P.

Kumar, M.

Kuyken, B.

Lamarini, S.

Lamont, M. R. E.

Laun, F.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Lee, J.

Lee, K. F.

Li, E.

Li, G.

M. Bass, G. Li, and E. V. Stryland, Hand Book of Optics Vol-IV3rd ed. (The McGraw-Hill, New York, 2010).

Liao, M.

Liu, X

Luan, F.

Luo, C.

Luther-Davies, B.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Luther-Devies, B.

Ma, P.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Mägi, E. C.

Marandi, A.

Mechin, D.

Menyuk, C. R.

Messaddeq, Y.

Moller, U.

Moller, U. V.

Møller, U.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moselund, P. M.

Mouawad, O.

Muravyev, S. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

Napier, B.

Neelakandan, M.

Norwood, R. A.

Ohishi, Y.

Osgood, R. M.

Pelusi, M. D.

Petersen, C. R.

Peyghambarian, N.

Plotnichenko, V. G.

Prasad, A.

Rahman, B. M. A.

M. R. Karim, B. M. A. Rahman, and G.P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Vector-H finite element solution of GaAs/GaAlAs rib waveguides,” proceedings of IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rochette, M.

Rode, A. V.

Roelens, M. A. F.

Roelkens, G.

Rudy, C. W.

Ruffin, P.

Russel, P. St. J.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

Sanghera, J. S.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914 (79140P), 1–5 (2011).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
[Crossref] [PubMed]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Savelii, I.

Schmidt, M. A.

Schmidt, M.A.

Scholle, K.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seddon, A. B.

Seng, F.

Shaw, L. B.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Smektala, F.

Stark, S. P.

Sterke, C. M.

Stryland, E. V.

M. Bass, G. Li, and E. V. Stryland, Hand Book of Optics Vol-IV3rd ed. (The McGraw-Hill, New York, 2010).

Sujecki, S.

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Ta’eed, V. G.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Terry, F. L.

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Toupin, P.

Troles, J.

Tverjanovich, A. S.

Vodopyanov, K. L.

Wang, L.

Wang, R.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Wang, T.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

Ward, J.

Wei, C.

Weiblen, R. J.

Werdehausen, D.

Wondraczek, L.

Xue, X.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).

Yang, C.

Yang, Z.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Devies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Yeom, D.

Yin, S.

Yu, Y.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhu, X.

App. Phy. Exp. (1)

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluride glass,” App. Phy. Exp. 6(032503) 1–3 (2013).

IEEE J. of Sel. Top. in Quan. Elect. (1)

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. of Sel. Top. in Quan. Elect. 20 (5), 7600608 (2014).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Nat. Commun. (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3(807), 1–5 (2012).
[Crossref]

Nat. Photonics (3)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Commun. (1)

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

Opt. Express (24)

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[Crossref] [PubMed]

M. R. Karim, B. M. A. Rahman, and G.P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
[Crossref]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulphide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

N. Granzow, M.A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3 “nano-spike” step index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, F. Seng, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21(24), 29488–29504 (2013).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Moller, A. B. Seddon, T. M. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

J. H. Kim, M. Chen, C. Yang, J. Lee, S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
[Crossref] [PubMed]

B. Kuyken, X Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
[Crossref] [PubMed]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Express 3(8), 1075–1086 (2013).
[Crossref]

A. Al-Kadry, M. E. Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22(25), 31131–31137 (2014).
[Crossref]

R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, “Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers,” Opt. Express 18(25), 26666–26674 (2010).
[Crossref] [PubMed]

J. Andreasen, A. Bhal, and M. Kolesik, “Spatial effects in supercontinuum generation in waveguides,” Opt. Express 22(21), 25756–25767 (2014).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Physical Review E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

Proc. SPIE (1)

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914 (79140P), 1–5 (2011).

proceedings of IEE (1)

B. M. A. Rahman and J. B. Davies, “Vector-H finite element solution of GaAs/GaAlAs rib waveguides,” proceedings of IEE 132(6), 349–353 (1985).

Science (1)

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics5th ed. (Academic, San Diego, California, 2013).

M. Bass, G. Li, and E. V. Stryland, Hand Book of Optics Vol-IV3rd ed. (The McGraw-Hill, New York, 2010).

Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev., 1–7 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Waveguide geometry.
Fig. 2
Fig. 2 GVD curves for the fundamental quasi-TE mode calculated from neff for three waveguides geometries employing As36S64 glass for both the upper and lower claddings. The black solid line curve shows the material dispersion curve for comparison.
Fig. 3
Fig. 3 GVD curves for the waveguide geometries employing two different lower claddings (solid black curve for Ge11.5As24S64.5 and red dashed curve for MgF2) for the fundamental quasi-TE mode (a) at a pump wavelength of 2 μm and (b) at a pump wavelength of 3.1 μm. Vertical dotted line indicates the position of pump wavelength.
Fig. 4
Fig. 4 Simulated SC spectra at a pump wavelength of 2 μm for (a) air-clad all-chalcogenide waveguide at peak power from 25, 100, and 500 W; (b) air-clad chalcogenide core employing MgF2 for its lower cladding at the same power levels; (c) waveguides with two different lower claddings at a peak power of 500 W only.
Fig. 5
Fig. 5 Spectral evolution along the waveguide length corresponding to Fig. 4(c).
Fig. 6
Fig. 6 Simulated SC spectra at a pump wavelength of 3.1 μm for (a) air-clad allchalcogenide waveguide at peak power between 100 W and 3000 W; (b) air-clad chalcogenide core employing MgF2 for its lower cladding for the same power levels; (c) waveguides employing with two different lower claddings at a peak power of 500 W only; (d) waveguides with two different lower claddings at peak power of 3000 W only.
Fig. 7
Fig. 7 Spectral evolution along the waveguide length corresponding to Fig. 6(c) (left column) and 6(d) (right column), respectively.

Tables (2)

Tables Icon

Table 1 Sellmeier fitting coefficients

Tables Icon

Table 2 Parameters used for simulation of the SC generation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = 1 + j = 1 m A j λ 2 λ 2 λ j 2 ,
ω 2 = [ ( × H ) * . ε ^ 1 ( × H ) + p ( . H ) * ( . H ) ] d x d y H * . μ ^ H d x d y ,
z A ( z , T ) = α 2 A + k 2 i k + 1 k ! β k k A T k + i ( γ + i α 2 2 A eff ) ( 1 + i ω 0 T ) × ( A ( z , T ) R ( T ) | A ( z , T T ) | 2 d T ) ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) .

Metrics