Abstract

Viscoelastic testing of biological cells has been performed with the optical tweezers and stretcher. Historically, the cells were modeled by the spring-dashpot network or the power-law models, which can however characterize only the homogeneous, isotropic viscoelastic material, but not the 3D cell itself. Our mechanical and finite element analyses show that the cell elongations are different significantly for different cell 3D shapes in the creep testing. In the dynamic testing the loss tangent, which is measurable directly in the experiment, is not sensitive to the cell shape. However, the stress-strain hysteresis loop still depends on the cell 3D shape.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical analysis of the optical tweezers in time-sharing regime

Lingyao Yu and Yunlong Sheng
Opt. Express 22(7) 7953-7961 (2014)

New testing and calculation method for determination viscoelasticity of optical glass

Yingying Zhang, Shaohui Yin, Rongguang Liang, Hong Luo, Huapan Xiao, and Ningxiao Yuan
Opt. Express 28(1) 626-640 (2020)

Investigation of the viscoelastic effect on optical-fiber sensing and its solution for 3D-printed sensor packages

Hongzhou Zhai, Qi Wu, Ke Xiong, Nobuhiro Yoshikawa, Tong Sun, and Kenneth T. V. Grattan
Appl. Opt. 58(16) 4306-4314 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
    [Crossref] [PubMed]
  2. A. Vaziri and A. Gopinath, “Cell and biomolecular mechanics in silico,” Nat. Mater. 7(1), 15–23 (2008).
    [Crossref] [PubMed]
  3. P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41(1), 75–97 (2011).
    [Crossref]
  4. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer, 1993), Chap. 2.
  5. C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
    [Crossref] [PubMed]
  6. Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
    [Crossref] [PubMed]
  7. A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
    [Crossref] [PubMed]
  8. E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
    [Crossref] [PubMed]
  9. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
    [Crossref] [PubMed]
  10. P. B. Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
    [Crossref] [PubMed]
  11. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
    [Crossref] [PubMed]
  12. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express 18(10), 10462–10472 (2010).
    [Crossref] [PubMed]
  13. L. Yu and Y. Sheng, “Mechanical analysis of the optical tweezers in time-sharing regime,” Opt. Express 22(7), 7953–7961 (2014).
    [Crossref] [PubMed]
  14. L. Yu, Y. Sheng, and A. Chiou, “Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers,” Opt. Express 21(10), 12174–12184 (2013).
    [Crossref] [PubMed]
  15. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
    [Crossref]
  16. T. Klöppel and W. A. Wall, “A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes,” Biomech. Model. Mechanobiol. 10(4), 445–459 (2011).
    [Crossref] [PubMed]
  17. V. Vadillo-Rodríguez and J. R. Dutcher, “Viscoelasticity of the bacterial cell envelope,” Soft Matter 7(9), 4101–4110 (2011).
    [Crossref]
  18. C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
    [Crossref]
  19. C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).
  20. F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
    [Crossref] [PubMed]
  21. T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
    [Crossref] [PubMed]
  22. Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
    [Crossref] [PubMed]
  23. D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
    [Crossref]
  24. C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
    [Crossref] [PubMed]
  25. J. Aernouts and J. J. Dirckx, “Viscoelastic properties of gerbil tympanic membrane at very low frequencies,” J. Biomech. 45(6), 919–924 (2012).
    [Crossref] [PubMed]
  26. D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
    [Crossref] [PubMed]
  27. G. Xu and J. Y. Shao, “Human neutrophil surface protrusion under a point load: location independence and viscoelasticity,” Am. J. Physiol. Cell Physiol. 295(5), C1434–C1444 (2008).
    [Crossref] [PubMed]

2014 (2)

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

L. Yu and Y. Sheng, “Mechanical analysis of the optical tweezers in time-sharing regime,” Opt. Express 22(7), 7953–7961 (2014).
[Crossref] [PubMed]

2013 (2)

L. Yu, Y. Sheng, and A. Chiou, “Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers,” Opt. Express 21(10), 12174–12184 (2013).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

2012 (4)

F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
[Crossref] [PubMed]

J. Aernouts and J. J. Dirckx, “Viscoelastic properties of gerbil tympanic membrane at very low frequencies,” J. Biomech. 45(6), 919–924 (2012).
[Crossref] [PubMed]

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

2011 (4)

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41(1), 75–97 (2011).
[Crossref]

T. Klöppel and W. A. Wall, “A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes,” Biomech. Model. Mechanobiol. 10(4), 445–459 (2011).
[Crossref] [PubMed]

V. Vadillo-Rodríguez and J. R. Dutcher, “Viscoelasticity of the bacterial cell envelope,” Soft Matter 7(9), 4101–4110 (2011).
[Crossref]

C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (5)

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

G. Xu and J. Y. Shao, “Human neutrophil surface protrusion under a point load: location independence and viscoelasticity,” Am. J. Physiol. Cell Physiol. 295(5), C1434–C1444 (2008).
[Crossref] [PubMed]

C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
[Crossref]

G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[Crossref] [PubMed]

A. Vaziri and A. Gopinath, “Cell and biomolecular mechanics in silico,” Nat. Mater. 7(1), 15–23 (2008).
[Crossref] [PubMed]

2006 (3)

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
[Crossref] [PubMed]

P. B. Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref] [PubMed]

2005 (1)

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

2004 (2)

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

2003 (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Aernouts, J.

J. Aernouts and J. J. Dirckx, “Viscoelastic properties of gerbil tympanic membrane at very low frequencies,” J. Biomech. 45(6), 919–924 (2012).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Anvari, B.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

B. Bareil, P.

Bai, J. J.

Bareil, P. B.

Bareil, P. P.

Bordeleau, F.

F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
[Crossref] [PubMed]

Brownell, W. E.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

Chalut, K.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Chee, C. Y.

C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
[Crossref]

Chen, C. W.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chen, Y. Q.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chew, K. T.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

Chien, S.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Chilvers, E. R.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Chiou, A.

Cicuta, P.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

Cloutier, G.

C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
[Crossref] [PubMed]

Crocker, J. C.

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Dao, M.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Desai, S. A.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

Dirckx, J. J.

J. Aernouts and J. J. Dirckx, “Viscoelastic properties of gerbil tympanic membrane at very low frequencies,” J. Biomech. 45(6), 919–924 (2012).
[Crossref] [PubMed]

Dutcher, J. R.

V. Vadillo-Rodríguez and J. R. Dutcher, “Viscoelasticity of the bacterial cell envelope,” Soft Matter 7(9), 4101–4110 (2011).
[Crossref]

Duval, P. L.

Eggleton, C. D.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

Ekpenyong, A. E.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Ermilov, S.

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

Ermilov, S. A.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

Fabry, B.

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41(1), 75–97 (2011).
[Crossref]

Fedyanin, A. A.

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

Fiddler, C.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Gopinath, A.

A. Vaziri and A. Gopinath, “Cell and biomolecular mechanics in silico,” Nat. Mater. 7(1), 15–23 (2008).
[Crossref] [PubMed]

Guck, J.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Hadj Henni, A.

C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
[Crossref] [PubMed]

Hoffman, B. D.

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

Huang, Y. S.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Käs, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Keyser, U. F.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Khokhlova, M. D.

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

Klöppel, T.

T. Klöppel and W. A. Wall, “A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes,” Biomech. Model. Mechanobiol. 10(4), 445–459 (2011).
[Crossref] [PubMed]

Kollmannsberger, P.

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41(1), 75–97 (2011).
[Crossref]

Kotar, J.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

Lautenschläger, F.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Lee, H. P.

C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
[Crossref]

Liao, G. B.

Lim, C. T.

C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
[Crossref] [PubMed]

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Lin, O.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Lu, C.

C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
[Crossref]

Lyubin, E. V.

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

Marceau, N.

F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
[Crossref] [PubMed]

Marr, D. W.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

Massiera, G.

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Murdock, D. R.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

Myrand Lapierre, M. E.

F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
[Crossref] [PubMed]

Ni, Y. L.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Pagliara, S.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Paschke, S.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Popel, A. S.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

Qian, F.

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

Quek, S. T.

C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
[Crossref] [PubMed]

Rancourt-Grenier, S.

Sawetzki, T.

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

Schmitt, C.

C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
[Crossref] [PubMed]

Shao, J. Y.

G. Xu and J. Y. Shao, “Human neutrophil surface protrusion under a point load: location independence and viscoelasticity,” Am. J. Physiol. Cell Physiol. 295(5), C1434–C1444 (2008).
[Crossref] [PubMed]

Sheng, Y.

Skryabina, M. N.

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

Sow, C. H.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

Spector, A. A.

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

Sung, L. A.

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

Suresh, S.

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Vadillo-Rodríguez, V.

V. Vadillo-Rodríguez and J. R. Dutcher, “Viscoelasticity of the bacterial cell envelope,” Soft Matter 7(9), 4101–4110 (2011).
[Crossref]

Van Citters, K. M.

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

Vaziri, A.

A. Vaziri and A. Gopinath, “Cell and biomolecular mechanics in silico,” Nat. Mater. 7(1), 15–23 (2008).
[Crossref] [PubMed]

Wall, W. A.

T. Klöppel and W. A. Wall, “A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes,” Biomech. Model. Mechanobiol. 10(4), 445–459 (2011).
[Crossref] [PubMed]

Wei, M. T.

Whyte, G.

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

Xu, G.

G. Xu and J. Y. Shao, “Human neutrophil surface protrusion under a point load: location independence and viscoelasticity,” Am. J. Physiol. Cell Physiol. 295(5), C1434–C1444 (2008).
[Crossref] [PubMed]

Yoon, G.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

Yoon, Y. Z.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

Yu, L.

Zhou, E. H.

C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
[Crossref] [PubMed]

Acta Biomater. (1)

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Biomater. 52, 1837–1845 (2004).

Am. J. Physiol. Cell Physiol. (1)

G. Xu and J. Y. Shao, “Human neutrophil surface protrusion under a point load: location independence and viscoelasticity,” Am. J. Physiol. Cell Physiol. 295(5), C1434–C1444 (2008).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41(1), 75–97 (2011).
[Crossref]

Biomech. Model. Mechanobiol. (1)

T. Klöppel and W. A. Wall, “A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes,” Biomech. Model. Mechanobiol. 10(4), 445–459 (2011).
[Crossref] [PubMed]

Biophys. J. (2)

D. R. Murdock, S. A. Ermilov, A. A. Spector, A. S. Popel, W. E. Brownell, and B. Anvari, “Effects of chlorpromazine on mechanical properties of the outer hair cell plasma membrane,” Biophys. J. 89(6), 4090–4095 (2005).
[Crossref] [PubMed]

T. Sawetzki, C. D. Eggleton, S. A. Desai, and D. W. Marr, “Viscoelasticity as a biomarker for high-throughput flow cytometry,” Biophys. J. 105(10), 2281–2288 (2013).
[Crossref] [PubMed]

J. Biomech. (3)

C. Schmitt, A. Hadj Henni, and G. Cloutier, “Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,” J. Biomech. 44(4), 622–629 (2011).
[Crossref] [PubMed]

J. Aernouts and J. J. Dirckx, “Viscoelastic properties of gerbil tympanic membrane at very low frequencies,” J. Biomech. 45(6), 919–924 (2012).
[Crossref] [PubMed]

C. T. Lim, E. H. Zhou, and S. T. Quek, “Mechanical models for living cells--a review,” J. Biomech. 39(2), 195–216 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, “Cellular viscoelasticity probed by active rheology in optical tweezers,” J. Biomed. Opt. 17(10), 101510 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

Y. Q. Chen, C. W. Chen, Y. L. Ni, Y. S. Huang, O. Lin, S. Chien, L. A. Sung, and A. Chiou, “Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis,” J. Biophotonics 7(8), 647–655 (2014).
[Crossref] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Nat. Mater. (1)

A. Vaziri and A. Gopinath, “Cell and biomolecular mechanics in silico,” Nat. Mater. 7(1), 15–23 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Biol. (1)

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5(3), 036007 (2008).
[Crossref] [PubMed]

Phys. Lett. A (1)

C. Y. Chee, H. P. Lee, and C. Lu, “Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte,” Phys. Lett. A 372(9), 1357–1362 (2008).
[Crossref]

Phys. Rev. Lett. (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

PLoS ONE (2)

A. E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U. F. Keyser, E. R. Chilvers, and J. Guck, “Viscoelastic properties of differentiating blood cells are fate- and function-dependent,” PLoS ONE 7(9), e45237 (2012).
[Crossref] [PubMed]

F. Bordeleau, M. E. Myrand Lapierre, Y. Sheng, and N. Marceau, “Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics,” PLoS ONE 7(6), e38780 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, “The consensus mechanics of cultured mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 103(27), 10259–10264 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

D. R. Murdock, S. Ermilov, F. Qian, W. E. Brownell, and B. Anvari, “Optical tweezers study of viscoelastic properties in the outer hair cell plasma membrane,” Proc. SPIE 5331, 118–125 (2004).
[Crossref]

Soft Matter (1)

V. Vadillo-Rodríguez and J. R. Dutcher, “Viscoelasticity of the bacterial cell envelope,” Soft Matter 7(9), 4101–4110 (2011).
[Crossref]

Other (1)

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer, 1993), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Three morphologically different objects: cylinder (a); biconcave (b); and sphere (c).
Fig. 2
Fig. 2 Creep behaviors of three 3D objects and 1D SLS model.
Fig. 3
Fig. 3 3D distribution of local stress σxx component in three solid body objects.
Fig. 4
Fig. 4 3D Volumetric distribution of local stress σxx component in the membrane of three objects.
Fig. 5
Fig. 5 (a): Stress and strain as functions of time with arbitrary units; (b): Stress versus strain curve of the simulated cylinder loaded by a sinusoidal load at a frequency of 1 KHz with the illustrations of mean lines and intercepts.
Fig. 6
Fig. 6 (a): Stress versus strain curves of three 3D objects in the dynamic testing at 1 KHz by FEM. (b): Loss tangent as a function of frequency computed by the SLS model (purple line); and by FEM for three 3D objects.

Tables (2)

Tables Icon

Table 1 Characteristic creep testing for three solid body objects

Tables Icon

Table 2 Characteristic creep testing for three objects of viscoelastic membrane

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε(t)= σ 0 G σ 0 G (G+ G 1 ) G 1 e t G 1 G/[ η 1 ( G 1 +G)]
s d =G ε d + m=1 N G m q m
ε ˙ d = s ˙ m G m + s m η m ,and G m ε ˙ d = q ˙ m + q m τ m
s ˜ d = G 0 ε ˜ d
G 0 ' =G+ m=1 N G m (ω τ m ) 2 1+ (ω τ m ) 2 and G 0 '' = m=1 N G m ω τ m 1+ (ω τ m ) 2
G 0 ' =G+ G 1 (ωτ) 2 1+ (ωτ) 2 and G 0 '' = G 1 ωτ 1+ (ωτ) 2
tanδ G 0 " G 0 ' = G 1 ω τ G[ 1+ (ωτ) 2 ]+ G 1 (ωτ) 2 = 1 [ 1+(1/K) ]ωτ+[ 1/(Kωτ) ]
W= 0 ε 0 σdε= 0 ω/2π σ dε dt dt= ε 0 σ 0 ( cosδ 2 + πsinδ 4 )

Metrics