Abstract

Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 360° three-dimensional display using circular-aligned OLED microdisplays

Dongdong Teng, Lilin Liu, and Biao Wang
Opt. Express 23(3) 2058-2069 (2015)

Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays

Dongdong Teng, Zhiyong Pang, Yueli Zhang, Dong Wu, Jiahui Wang, Lilin Liu, and Biao Wang
Opt. Express 23(17) 21549-21564 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
    [Crossref]
  2. J. Y. Son, V. V. Saveljev, J. S. Kim, S. S. Kim, and B. Javidi, “Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates,” Appl. Opt. 43(26), 4985–4992 (2004).
    [Crossref] [PubMed]
  3. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
    [Crossref]
  4. Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat panel display with slanted pixel arrangement for 16-view display,” In Stereoscopic Displays and Applications XX, A. Woods, N. Holiman, and J. Merrittl, eds, Proc. SPIE-IS& T Electronic Imaging 7237, 723708 (2009).
    [Crossref]
  5. L. Bogaert, Y. Meuret, S. Roelandt, A. Avci, H. De Smet, and H. Thienpont, “Demonstration of a multiview projection display using decentered microlens arrays,” Opt. Express 18(25), 26092–26106 (2010).
    [Crossref] [PubMed]
  6. C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
    [Crossref]
  7. K. H. Yoon, H. K. Ju, I. K. Park, and S. K. Kim, “Determination of the optimum viewing distance for a multi-view auto-stereoscopic 3D display,” Opt. Express 22(19), 22616–22631 (2014).
    [Crossref] [PubMed]
  8. S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
    [Crossref]
  9. N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
    [Crossref]
  10. J. Reitterer, F. Fidler, G. Schmid, T. Riel, C. Hambeck, F. Saint Julien-Wallsee, W. Leeb, and U. Schmid, “Design and evaluation of a large-scale autostereoscopic multi-view laser display for outdoor applications,” Opt. Express 22(22), 27063–27068 (2014).
    [Crossref] [PubMed]
  11. S. P. Hines, “Autostereoscopic video display with motion parallax,” Proc. SPIE 3012, 208–219 (1997).
    [Crossref]
  12. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon. 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  13. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
    [Crossref]
  14. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  15. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
    [Crossref]
  16. S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).
  17. P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” IEEE Intervational Conference on Multimedia and Expo (ICME) 1594–1599 (2010).
    [Crossref]
  18. O. Eldes, K. Akşit, and H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
    [Crossref] [PubMed]
  19. Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
    [Crossref]

2014 (2)

2013 (2)

2012 (1)

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

2011 (1)

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

2010 (3)

2005 (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

2004 (1)

2003 (1)

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

2000 (1)

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

1997 (3)

S. P. Hines, “Autostereoscopic video display with motion parallax,” Proc. SPIE 3012, 208–219 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[Crossref]

1996 (1)

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
[Crossref]

Aksit, K.

Ando, H.

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

Avci, A.

Bogaert, L.

Canepa, P.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Clarke, J. A.

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[Crossref]

De Smet, H.

Dodgson, N. A.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Eldes, O.

Fidler, F.

Franklin, A. R.

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
[Crossref]

Geng, J.

Hambeck, C.

Hines, S. P.

S. P. Hines, “Autostereoscopic video display with motion parallax,” Proc. SPIE 3012, 208–219 (1997).
[Crossref]

Hirsch, M.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
[Crossref]

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Iwasawa, S.

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

Javidi, B.

Ju, H. K.

Ju, S. H.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Kawakita, M.

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

Kim, J. S.

Kim, K. T.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Kim, M. D.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Kim, S. K.

Kim, S. S.

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
[Crossref]

Lang, S. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Lanman, D.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
[Crossref]

Leeb, W.

Lim, K. M.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Mark, M. S.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Martin, G.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Meuret, Y.

Moore, J. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Nago, N.

Nakanuma, H.

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Park, I. K.

Park, J. H.

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Parker, D. W.

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
[Crossref]

Raskar, R.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
[Crossref]

Reitterer, J.

Riel, T.

Roelandt, S.

Saint Julien-Wallsee, F.

Saveljev, V. V.

Schmid, G.

Schmid, U.

Son, J. Y.

Takaki, Y.

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Thienpont, H.

Urey, H.

van Berkel, C.

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[Crossref]

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
[Crossref]

Yano, S.

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

Yoon, K. H.

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

ACM Trans. Graph. (1)

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163–172 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Disp. Technol. (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

J. Soc. Inf. Disp. (1)

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[Crossref]

Opt. Express (5)

Proc. SPIE (6)

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

S. Iwasawa, M. Kawakita, S. Yano, and H. Ando, “Implementation of autostereoscopic HD projection display with dense horizontal parallax,” Proc. SPIE 7863, 78630T (2011).
[Crossref]

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32–39 (1996).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

S. P. Hines, “Autostereoscopic video display with motion parallax,” Proc. SPIE 3012, 208–219 (1997).
[Crossref]

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[Crossref]

SID Syposium Dig. Tech. Pap. (1)

S. H. Ju, M. D. Kim, M. S. Mark, K. T. Kim, J. H. Park, and K. M. Lim, “Viewer’s eye position estimation using single camera,” SID Syposium Dig. Tech. Pap. 44(1), 671–674 (2012).

Other (2)

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” IEEE Intervational Conference on Multimedia and Expo (ICME) 1594–1599 (2010).
[Crossref]

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat panel display with slanted pixel arrangement for 16-view display,” In Stereoscopic Displays and Applications XX, A. Woods, N. Holiman, and J. Merrittl, eds, Proc. SPIE-IS& T Electronic Imaging 7237, 723708 (2009).
[Crossref]

Supplementary Material (1)

» Media 1: AVI (4997 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Optical structure of the proposed multiview display system. Two OLED microdisplays are drawn here to demonstrate the proposed ideas.
Fig. 2
Fig. 2 Optical structures of the proposed multiview 3D display system with only two microdisplay-lens combination units for simplicity: (a) Only OLED microdisplay k being activated by stereo-image k; (b) Only OLED microdisplay k + 1 being activated by stereo-image k + 1.
Fig. 3
Fig. 3 The spatially changing transitional stereo-images observed by a moving observation point at different positions of a CFZ. The observation points A and A' are as denoted in the Fig. 2(b).
Fig. 4
Fig. 4 Optical diagram showing the observed transition stereo-image when the pupil is covered by a CFZ.
Fig. 5
Fig. 5 Optical diagram showing the observed transition stereo-image when the pupil straddles the adjacent SVZ and CFZ.
Fig. 6
Fig. 6 Optical diagram showing the offsetting of the optical axis of the Lens m with respect to the corresponding microdisplay.
Fig. 7
Fig. 7 Photograph of the experimental display system.
Fig. 8
Fig. 8 Schematic diagram showing the vertical viewing zone of the display system.
Fig. 9
Fig. 9 Measured light intensities along the horizontal center line of the viewing zone.
Fig. 10
Fig. 10 Captured transitional stereo-images at a observation position in the CFZ0~1 when (a)only the microdisplay 0 is active, (b) only the microdisplay 1 is active and (c)both of them are active.
Fig. 11
Fig. 11 Captured images with a spatial interval of 13mm along the horizontal direction when the proposed display system works. The labels on each image denote the shooting position, with 0mm representing the midpoint of the viewing zone. A more intuitive feeling can be found in the online multimedia (Media 1).
Fig. 12
Fig. 12 Schematic diagram showing the spatial expansion of the SVZs and CFZs along the z-direction.
Fig. 13
Fig. 13 Correction of the image distortion by the electronic method.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L NF =2(f/u) Δ L F =(f/u) d x
I Q = α Qk I Q k + α Qk+1 I Q k+1
α Qk = D 2 Q/ D 2 D 1 α Qk+1 =Q D 1 / D 2 D 1 D 2 D 1 =2(β1)d
I Q' = α Q'k I Q' k + α Q'k+1 I Q' k+1
α Qk+1 =Q' D 3 /(2(β1)d) α Qk =1 α Qk+1
β δ m = δ m +m( d x +2 Δ ) δ m =m( d x +2 Δ )/(β1)
A x =2( δ k +( d x +2 Δ )/2)=( 2m+β1 )( d x +2 Δ )/( β1 )
Eq.(7) N.A.> A x /f }2m+1<[(f×N.A.)(β1)/( d x +2 Δ )(β2)]
Viewing Anglearcsin[ ((2m+1) L NF +2m L F )/(v+f) ]

Metrics