Abstract

We show numerically that a compact structure, consisting of multiple optical microcavities at both the entrance and exit sides of a subwavelength plasmonic slit, can lead to greatly enhanced directional transmission through the slit. The microcavities can increase the reflectivity at both sides of the slit, and therefore the resonant transmission enhancement. In addition, the microcavities can greatly improve the impedance matching, and therefore the coupling between free-space waves and the slit mode. An optimized structure with two microcavities on both the entrance and exit sides of the slit leads to ~16 times larger transmission cross section per unit angle in the normal direction compared to the optimized reference slit without microcavities. We also show numerically that the operation frequency range for high emission in the normal direction is broad.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microcavity enhanced optical absorption in subwavelength slits

Changjun Min, Liu Yang, and Georgios Veronis
Opt. Express 19(27) 26850-26858 (2011)

Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides

Yin Huang, Changjun Min, and Georgios Veronis
Opt. Express 20(20) 22233-22244 (2012)

Periodic dielectric bars assisted enhanced transmission and directional light emission from a single subwavelength slit

Zu-Bin Li, Jian-Guo Tian, Wen-Yuan Zhou, Wei-Ping Zang, and Chunping Zhang
Opt. Express 14(18) 8037-8042 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  2. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [Crossref]
  3. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
    [Crossref] [PubMed]
  4. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27, 1947–1956 (2010).
    [Crossref]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  6. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [Crossref] [PubMed]
  7. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [Crossref]
  8. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
    [Crossref]
  9. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
    [Crossref] [PubMed]
  10. G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
    [Crossref]
  11. J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
    [Crossref]
  12. S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
    [Crossref]
  13. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
    [Crossref]
  14. J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
    [Crossref] [PubMed]
  15. J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31, 388–393 (2014).
    [Crossref]
  16. W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22, 5416–5421 (2014).
    [Crossref] [PubMed]
  17. P. Kuang, J. M. Park, G. Liu, Z. Ye, W. Leung, S. Chaudhary, D. Lynch, K. M. Ho, and K. Constant, “Metalnanowall grating transparent electrodes: Achieving high optical transmittance at high incident angles with minimal diffraction,” Opt. Express 21, 2393–2401 (2013).
    [Crossref] [PubMed]
  18. Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21, 6139–6152 (2013).
    [Crossref] [PubMed]
  19. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
    [Crossref]
  20. N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
    [Crossref]
  21. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16, 9708–9713 (2008).
    [Crossref] [PubMed]
  22. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [Crossref] [PubMed]
  23. C. Min, L. Yang, and G. Veronis, “Microcavity enhanced optical absorption in subwavelength slits,” Opt. Express 19, 26850–26858 (2011).
    [Crossref]
  24. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), pp. 169–182.
    [Crossref]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  26. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).
  28. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
    [Crossref]
  29. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  30. Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
    [Crossref] [PubMed]
  31. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [Crossref] [PubMed]
  32. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
    [Crossref] [PubMed]
  33. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
    [Crossref] [PubMed]
  34. K. X. Wang, Z. Yu, S. Sandhu, V. Liu, and S. Fan, “Condition for perfect antireflection by optical resonance at material interface,” Optica 1, 388–395 (2014).
    [Crossref]
  35. K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289–296 (1990).
    [Crossref]

2014 (4)

2013 (2)

2012 (2)

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27, 1947–1956 (2010).
[Crossref]

2009 (2)

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

2008 (2)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16, 9708–9713 (2008).
[Crossref] [PubMed]

2007 (5)

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
[Crossref]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

2005 (2)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
[Crossref]

2004 (1)

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

2003 (3)

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

1990 (1)

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289–296 (1990).
[Crossref]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

Barnard, E. S.

Bozhevolnyi, S. I.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Capasso, F.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
[Crossref]

Catrysse, P. B.

Chandran, A.

Chaudhary, S.

Chen, L.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
[Crossref]

Chen, X.

Chen, Y.

Constant, K.

Cuche, A.

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Dai, S.

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Devaux, E.

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Fan, S.

K. X. Wang, Z. Yu, S. Sandhu, V. Liu, and S. Fan, “Condition for perfect antireflection by optical resonance at material interface,” Optica 1, 388–395 (2014).
[Crossref]

L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27, 1947–1956 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[Crossref] [PubMed]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), pp. 169–182.
[Crossref]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Garcia-Vidal, F. J.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Gbur, G.

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
[Crossref]

Genet, C.

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ginzburg, P.

Gong, H.

Gonzalez, M. U.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Gordon, R.

Guo, B.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

Hashizume, J.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Ho, K. M.

Hu, R.

Huang, Y.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Ishihara, K.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Kaiser, T.

Kato, K.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Koyama, F.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Krenn, J. R.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Krishnakumar, K.

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289–296 (1990).
[Crossref]

Kuang, P.

Lederer, F.

Leung, W.

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Li, Q.

Liang, Y.

Linke, R. A.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Liu, G.

Liu, V.

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Lynch, D.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Martin-Moreno, L.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Min, C.

Min, Q.

Nakada, M.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Orenstein, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J. M.

Peng, W.

Pertsch, T.

Peuker, R.

Qi, J.

Qiu, M.

Radko, I. P.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

Rodrigo, S. G.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

Sandhu, S.

Schouten, H. F.

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
[Crossref]

Shinada, S.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

Song, G.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

Thio, T.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

C. Min, L. Yang, and G. Veronis, “Microcavity enhanced optical absorption in subwavelength slits,” Opt. Express 19, 26850–26858 (2011).
[Crossref]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[Crossref] [PubMed]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), pp. 169–182.
[Crossref]

Verslegers, L.

Visser, T. D.

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
[Crossref]

Wang, K. X.

Wang, Q.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
[Crossref]

Wang, W.

Weeber, J.-C.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[Crossref] [PubMed]

Yanagisawa, M.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Yang, L.

Yang, Y.

Ye, Z.

Yi, J. M.

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Yokota, H.

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Yu, N.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
[Crossref]

Yu, Z.

Zhao, D.

Zou, H.

ACS Photonics (1)

J. M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87, 191109 (2005).
[Crossref]

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface emitting laser with metal grating,” Appl. Phys. Lett. 83, 836–838 (2003).
[Crossref]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91, 021103 (2007).
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Laser & Photon. Rev. (1)

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser & Photon. Rev. 6, 24–46 (2012).
[Crossref]

Nano Lett. (1)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (8)

W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22, 5416–5421 (2014).
[Crossref] [PubMed]

P. Kuang, J. M. Park, G. Liu, Z. Ye, W. Leung, S. Chaudhary, D. Lynch, K. M. Ho, and K. Constant, “Metalnanowall grating transparent electrodes: Achieving high optical transmittance at high incident angles with minimal diffraction,” Opt. Express 21, 2393–2401 (2013).
[Crossref] [PubMed]

Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21, 6139–6152 (2013).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16, 9708–9713 (2008).
[Crossref] [PubMed]

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
[Crossref] [PubMed]

C. Min, L. Yang, and G. Veronis, “Microcavity enhanced optical absorption in subwavelength slits,” Opt. Express 19, 26850–26858 (2011).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (2)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289–296 (1990).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Sel. Topics Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J”. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Trans. Magn. Soc. Jpn (1)

J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn 4, 255–259 (2004).
[Crossref]

Other (5)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), pp. 169–182.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a structure consisting of a slit in a silver film with N microcavities at the entrance side, and M microcavities at the exit side of the slit. (b) Schematic defining the transmission cross section σT1 of a silver-air-silver waveguide through the structure above the entrance side of the slit of Fig. 1(a) for a normally incident plane wave from air. (c) Schematic defining the reflection r of the fundamental TM mode of a silver-air-silver waveguide at the interface of such a waveguide with the structures at the entrance and exit sides of the slit of Fig. 1(a).
Fig. 2
Fig. 2 (a) Schematic of a structure consisting of a single slit in a silver film. (b) Normalized transmission cross section per unit angle σ in the normal direction (θ = 0°) for the structure of Fig. 2(a) as a function of slit length L calculated using FDFD (black dots) and scattering matrix theory (red solid line). Results are shown for w=50 nm and λ0=1.55 μm.
Fig. 3
Fig. 3 (a) Profile of the magnetic field amplitude for the structure of Fig. 2(a), normalized with respect to the field amplitude of the incident plane wave. Results are shown for L=474 nm. All other parameters are as in Fig. 2(b). (b) Profile of the magnetic field amplitude for the structure of Fig. 1(a), normalized with respect to the field amplitude of the incident plane wave. Results are shown for N=1, M=1, and optimized parameters of (wT1, dT1, wB1, dB1) = (1140, 430, 1140, 430) nm. All other parameters are as in Fig. 3(a). (c) Profile of the magnetic field amplitude for the structure of Fig. 1(a), normalized with respect to the field amplitude of the incident plane wave. Results are shown for N=2, M=2, and optimized parameters of (wT1, dT1, wT2, dT2, wB1, dB1, wB2, dB2) = (1560, 500, 1200, 380, 1200, 380, 1560, 500) nm. All other parameters are as in Fig. 3(a).
Fig. 4
Fig. 4 Directivity D as a function of the angle θ with respect to the normal for the optimized structures of Fig. 1(a) with N=M=0 (red line), N=M=1 (blue line), and N=M=2 (black line). All other parameters for the N=M=0, N=M=1, and N=M=2 cases are as in Figs. 3(a), 3(b), and 3(c), respectively.
Fig. 5
Fig. 5 Normalized transmission cross section per unit angle σ in the normal direction (θ = 0°) as a function of frequency for the optimized structures of Fig. 1(a) with N=M=0 (red line), N=M=1 (blue line), and N=M=2 (black line). All other parameters for the N=M=0, N=M=1, and N=M=2 cases are as in Figs. 3(a), 3(b), and 3(c), respectively. Also shown is the transmission cross section per unit angle in the normal direction for the optimized N = M = 2 structure, if the metal in the structure is assumed to be lossless (black dashed line).

Tables (1)

Tables Icon

Table 1 Transmission cross sections σT1 and σT, reflection coefficient r, resonance enhancement factor ηres, power transmission coefficient T, directivity in the normal direction D(θ = 0°), and normalized transmission cross section per unit angle in the normal direction σ (θ = 0°)/(w/π) calculated using scattering matrix theory and FDFD. Results are shown for the optimized structures of Fig. 1(a) with (N,M) = (0,0),(1,1),(2,2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D ( θ ) = S PW ( θ ) π r FF P out ,
σ ( θ ) = σ T D ( θ ) π = σ T 1 η res T D ( θ ) π ,

Metrics