Abstract

Two distinct single-photon plasmon-modulated photo-luminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X- and L-symmetry points of the electronic band structure of gold. In the main section of the article, the characteristics of these photoluminescence processes are described and discussed. In the last section, the background continuum accompanying surface-enhanced Raman scattering (SERS) spectra from benzenethiol and 4-mercaptopyridine self-assembled monolayers chemisorbed on nanostructured gold surfaces is shown to originate from plasmon-modulated photoluminescence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios

Feng Wang, Minghua Wang, Dongsheng Li, and Deren Yang
Opt. Mater. Express 2(10) 1437-1448 (2012)

Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves

Kosei Ueno, Sho Nozawa, and Hiroaki Misawa
Opt. Express 23(22) 28584-28592 (2015)

Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation

Huihui Lu, Hanqing Xiong, Zhijin Huang, Yang Li, Huazhuo Dong, Donghui He, Jiangli Dong, Heyuan Guan, Wentao Qiu, Xinyue Zhang, Wenguo Zhu, Jianhui Yu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 27(14) 19852-19863 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [Crossref]
  2. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
    [Crossref]
  3. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  4. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
    [Crossref]
  5. P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
    [Crossref]
  6. T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13(1), 194–198 (2013).
    [Crossref] [PubMed]
  7. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
    [Crossref]
  8. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [Crossref]
  9. J. C. Slater, “Wave functions in a periodic potential,” Phys. Rev. 51(10), 846–851 (1937).
    [Crossref]
  10. A. B. Pippard, “Experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. Lond. A 250(979), 325–357 (1957).
    [Crossref]
  11. B. Segall, “Fermi surface and energy bands of copper,” Phys. Rev. 125(1), 109–122 (1962).
    [Crossref]
  12. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
    [Crossref]
  13. G. A. Burdick, “Energy band structure of copper,” Phys. Rev. 129(1), 138–150 (1963).
    [Crossref]
  14. D. Shoenberg, “The Fermi surfaces of copper, silver and gold I. The de Haas-van Alphen effect,” Phil. Trans. R. Soc. A 255(1052), 85–133 (1962).
    [Crossref]
  15. D. Beaglehole, “The optical properties of the noble metals,” Proc. Phys. Soc. 87(2), 461–471 (1966).
    [Crossref]
  16. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon Press, 1936).
  17. N. E. Christensen and S. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
    [Crossref]
  18. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
    [Crossref]
  19. R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
    [Crossref]
  20. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  21. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [Crossref] [PubMed]
  22. A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
    [Crossref]
  23. M.-L. Thèye, “Investigation of the optical properties of Au by the means of thin semitransparent films,” Phys. Rev. B 2(8), 3060–3078 (1970).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. A. H. Wilson, The Theory of Metals (Cambridge University Press, 1936).
  26. R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).
  27. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
    [Crossref] [PubMed]
  28. Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
    [Crossref] [PubMed]
  29. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
    [Crossref]
  30. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [Crossref]
  31. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
    [Crossref]
  32. T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
    [Crossref]
  33. M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
    [Crossref] [PubMed]
  34. H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
    [Crossref] [PubMed]
  35. F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
    [Crossref]
  36. L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
    [Crossref] [PubMed]
  37. J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
    [Crossref]
  38. M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
    [Crossref] [PubMed]
  39. L. Le Thi Ngoc, T. Yuan, M. Odijk, A. van den Berg, H. Permentier, R. Bischoff, and E. T. Carlen, “Surface-enhanced Raman spectroelectrochemical analysis system with metalloporphyrin modified electrodes for drug metabolism investigation,” in Proceedings of the International Conference on Raman Spectroscopy (2014).
  40. T. E. Furtak and J. A. Reyes, “Critical analysis of theoretical models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93(2-3), 351–382 (1980).
    [Crossref]
  41. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
    [Crossref]
  42. J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
    [Crossref]
  43. E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
    [Crossref]
  44. H. Seki and T. J. Chuang, “The role of cavity sites in surface-enhanced Raman scattering,” Chem. Phys. Lett. 100(5), 393–396 (1983).
    [Crossref]
  45. S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
    [Crossref]
  46. J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
    [Crossref]
  47. R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
    [Crossref]
  48. A. Otto, “Raman scattering from adsorbates on silver,” Surf. Sci. 92(1), 145–152 (1980).
    [Crossref]
  49. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
    [Crossref]
  50. T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
    [Crossref] [PubMed]
  51. H. Ueba, “Effective resonant light scattering from adsorbed molecules,” J. Chem. Phys. 73(2), 725–732 (1980).
    [Crossref]
  52. G. Varsanyi, Vibrational Spectra of Benzene Derivates (Academic Press, 1969).
  53. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
    [Crossref]

2014 (1)

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

2013 (3)

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13(1), 194–198 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

2011 (1)

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

2010 (1)

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

2006 (2)

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

2005 (2)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

2004 (2)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

2003 (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

2000 (2)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

1998 (4)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[Crossref]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

1988 (1)

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
[Crossref]

1985 (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1983 (2)

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

H. Seki and T. J. Chuang, “The role of cavity sites in surface-enhanced Raman scattering,” Chem. Phys. Lett. 100(5), 393–396 (1983).
[Crossref]

1981 (1)

R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
[Crossref]

1980 (4)

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
[Crossref]

A. Otto, “Raman scattering from adsorbates on silver,” Surf. Sci. 92(1), 145–152 (1980).
[Crossref]

H. Ueba, “Effective resonant light scattering from adsorbed molecules,” J. Chem. Phys. 73(2), 725–732 (1980).
[Crossref]

T. E. Furtak and J. A. Reyes, “Critical analysis of theoretical models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93(2-3), 351–382 (1980).
[Crossref]

1979 (4)

J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
[Crossref]

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
[Crossref]

1975 (1)

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1971 (1)

N. E. Christensen and S. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[Crossref]

1970 (1)

M.-L. Thèye, “Investigation of the optical properties of Au by the means of thin semitransparent films,” Phys. Rev. B 2(8), 3060–3078 (1970).
[Crossref]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

1966 (1)

D. Beaglehole, “The optical properties of the noble metals,” Proc. Phys. Soc. 87(2), 461–471 (1966).
[Crossref]

1963 (1)

G. A. Burdick, “Energy band structure of copper,” Phys. Rev. 129(1), 138–150 (1963).
[Crossref]

1962 (3)

D. Shoenberg, “The Fermi surfaces of copper, silver and gold I. The de Haas-van Alphen effect,” Phil. Trans. R. Soc. A 255(1052), 85–133 (1962).
[Crossref]

B. Segall, “Fermi surface and energy bands of copper,” Phys. Rev. 125(1), 109–122 (1962).
[Crossref]

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

1957 (1)

A. B. Pippard, “Experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. Lond. A 250(979), 325–357 (1957).
[Crossref]

1937 (1)

J. C. Slater, “Wave functions in a periodic potential,” Phys. Rev. 51(10), 846–851 (1937).
[Crossref]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Apell, P.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
[Crossref]

Aspnes, D. E.

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
[Crossref]

Bacon, D. D.

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
[Crossref]

Barnett, S. M.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

Bartlett, P. N.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Baumberg, J. J.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Beaglehole, D.

D. Beaglehole, “The optical properties of the noble metals,” Proc. Phys. Soc. 87(2), 461–471 (1966).
[Crossref]

Benbow, R. L.

R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
[Crossref]

Bergman, J. G.

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Bigot, J.-Y.

T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[Crossref]

Biju, V.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Birke, R. L.

R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
[Crossref]

J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
[Crossref]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
[Crossref]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Burdick, G. A.

G. A. Burdick, “Energy band structure of copper,” Phys. Rev. 129(1), 138–150 (1963).
[Crossref]

Burstein, E.

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Carlen, E. T.

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Chang, W.-S.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Chen, C. K.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

Chen, C. Y.

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Chen, Y. J.

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Christensen, N. E.

N. E. Christensen and S. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, H.

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

Chuang, T. J.

H. Seki and T. J. Chuang, “The role of cavity sites in surface-enhanced Raman scattering,” Chem. Phys. Lett. 100(5), 393–396 (1983).
[Crossref]

Cintra, S.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Cole, R. M.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

Djurisic, A. B.

Dominguez-Medina, S.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Duan, H.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Ehrenreich, H.

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

Elazar, J. M.

El-Sayed, M. A.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Failla, A. V.

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

Fang, Y.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Furtak, T. E.

T. E. Furtak and J. A. Reyes, “Critical analysis of theoretical models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93(2-3), 351–382 (1980).
[Crossref]

Gaiduk, A.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Gersten, J. I.

J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
[Crossref]

R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
[Crossref]

Gittins, D. I.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Guerrisi, M.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Hashimoto, K.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Heinz, T. F.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

Heritage, J. P.

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

Hu, H.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Ikehata, A.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Ishikawa, M.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Itoh, T.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Jiang, J.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Jin, M.

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kelf, T. A.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Kelley, D. F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

Khatua, S.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Kikkawa, Y.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Kinsbron, E.

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
[Crossref]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Landes, C. F.

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Lässer, R.

R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
[Crossref]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Le Thi Ngoc, L.

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

Leng, R.

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

Lindquist, S.

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Link, S.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Lombardi, J. R.

J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
[Crossref]

R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
[Crossref]

Lundqvist, S.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
[Crossref]

Mahajan, S.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

Majewski, M. L.

Martin, J. E.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

Mayya, K. S.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Meixner, A. J.

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Monreal, R.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
[Crossref]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Opsal, J.

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

Orrit, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Otto, A.

A. Otto, “Raman scattering from adsorbates on silver,” Surf. Sci. 92(1), 145–152 (1980).
[Crossref]

Ozaki, Y.

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

Parsapour, F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

Pelfrey, S. H.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

Perakis, I. E.

T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[Crossref]

Philipp, H. R.

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

Pinczuk, A.

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

Pippard, A. B.

A. B. Pippard, “Experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. Lond. A 250(979), 325–357 (1957).
[Crossref]

Rakic, A. D.

Reyes, J. A.

T. E. Furtak and J. A. Reyes, “Critical analysis of theoretical models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93(2-3), 351–382 (1980).
[Crossref]

Ricard, D.

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

Rosei, R.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Russell, A. E.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

Segall, B.

B. Segall, “Fermi surface and energy bands of copper,” Phys. Rev. 125(1), 109–122 (1962).
[Crossref]

Seki, H.

H. Seki and T. J. Chuang, “The role of cavity sites in surface-enhanced Raman scattering,” Chem. Phys. Lett. 100(5), 393–396 (1983).
[Crossref]

Senko, M.

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

Seraphin, S. O.

N. E. Christensen and S. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[Crossref]

Shahbazyan, T.

T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[Crossref]

Shahbazyan, T. V.

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13(1), 194–198 (2013).
[Crossref] [PubMed]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
[Crossref]

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

Shen, Z. X.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Shoenberg, D.

D. Shoenberg, “The Fermi surfaces of copper, silver and gold I. The de Haas-van Alphen effect,” Phil. Trans. R. Soc. A 255(1052), 85–133 (1962).
[Crossref]

Slater, J. C.

J. C. Slater, “Wave functions in a periodic potential,” Phys. Rev. 51(10), 846–851 (1937).
[Crossref]

Slaughter, L. S.

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Smith, N. V.

R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
[Crossref]

Speed, J. D.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

Swanglap, P.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Tcherniak, A.

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

Thèye, M.-L.

M.-L. Thèye, “Investigation of the optical properties of Au by the means of thin semitransparent films,” Phys. Rev. B 2(8), 3060–3078 (1970).
[Crossref]

Tosatti, E.

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Ueba, H.

H. Ueba, “Effective resonant light scattering from adsorbed molecules,” J. Chem. Phys. 73(2), 725–732 (1980).
[Crossref]

van den Berg, A.

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

van Wolferen, H.

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

Wackenhut, F.

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

Wiedemair, J.

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

Wiedenman, B.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

Wilcoxon, J. P.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

Willingham, B.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Winsemius, P.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Worlock, J. M.

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

Wormeester, H.

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

Yang, J. K.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Yorulmaz, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
[Crossref]

Zijlstra, P.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

ACS Nano (3)

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

L. Le Thi Ngoc, M. Jin, J. Wiedemair, A. van den Berg, and E. T. Carlen, “Large area metal nanowire arrays with tunable sub-20 nm nanogaps,” ACS Nano 7(6), 5223–5234 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Chem. Phys. Lett. (3)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

H. Seki and T. J. Chuang, “The role of cavity sites in surface-enhanced Raman scattering,” Chem. Phys. Lett. 100(5), 393–396 (1983).
[Crossref]

J. P. Heritage, J. G. Bergman, A. Pinczuk, and J. M. Worlock, “Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver,” Chem. Phys. Lett. 67(2-3), 229–232 (1979).
[Crossref]

Electrochem. Commun. (1)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, “Electrochemical SERS at a structured gold surface,” Electrochem. Commun. 7(7), 740–744 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

J. Chem. Phys. (4)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108(21), 9137–9143 (1998).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, and Y. Ozaki, “Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates,” J. Chem. Phys. 124(13), 134708 (2006).
[Crossref] [PubMed]

H. Ueba, “Effective resonant light scattering from adsorbed molecules,” J. Chem. Phys. 73(2), 725–732 (1980).
[Crossref]

J. Phys. Chem. B (1)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

J. Phys. Chem. C (4)

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C 114(16), 7242–7250 (2010).
[Crossref]

A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115(32), 15938–15949 (2011).
[Crossref]

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

J. Wiedemair, L. Le Thi Ngoc, A. van den Berg, and E. T. Carlen, “Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces,” J. Phys. Chem. C 118(22), 11857–11868 (2014).
[Crossref]

J. Raman Spectrosc. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

Nano Lett. (2)

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

T. V. Shahbazyan, “Theory of plasmon-enhanced metal photoluminescence,” Nano Lett. 13(1), 194–198 (2013).
[Crossref] [PubMed]

Nanoscale (1)

M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, and E. T. Carlen, “Large-area nanogap plasmon resonator arrays for plasmonics applications,” Nanoscale 4(15), 4712–4718 (2012).
[Crossref] [PubMed]

Phil. Trans. R. Soc. A (1)

D. Shoenberg, “The Fermi surfaces of copper, silver and gold I. The de Haas-van Alphen effect,” Phil. Trans. R. Soc. A 255(1052), 85–133 (1962).
[Crossref]

Philos. Trans. R. Soc. Lond. A (1)

A. B. Pippard, “Experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. Lond. A 250(979), 325–357 (1957).
[Crossref]

Phys. Rev. (4)

B. Segall, “Fermi surface and energy bands of copper,” Phys. Rev. 125(1), 109–122 (1962).
[Crossref]

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

G. A. Burdick, “Energy band structure of copper,” Phys. Rev. 129(1), 138–150 (1963).
[Crossref]

J. C. Slater, “Wave functions in a periodic potential,” Phys. Rev. 51(10), 846–851 (1937).
[Crossref]

Phys. Rev. B (10)

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

N. E. Christensen and S. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971).
[Crossref]

D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980).
[Crossref]

R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals. I. Cu, Ag, and Au,” Phys. Rev. B 24(4), 1895–1909 (1981).
[Crossref]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[Crossref]

M.-L. Thèye, “Investigation of the optical properties of Au by the means of thin semitransparent films,” Phys. Rev. B 2(8), 3060–3078 (1970).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27(4), 1965–1979 (1983).
[Crossref]

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on rough surfaces,” Phys. Rev. B 33(12), 7923–7936 (1986).
[Crossref]

Phys. Rev. Lett. (4)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

J. I. Gersten, R. L. Birke, and J. R. Lombardi, “Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface,” Phys. Rev. Lett. 43(2), 147–150 (1979).
[Crossref]

R. L. Birke, J. R. Lombardi, and J. I. Gersten, “Observation of a continuum in enhanced Raman scattering from a metal-solution interface,” Phys. Rev. Lett. 43(1), 71–75 (1979).
[Crossref]

T. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[Crossref]

Phys. Scr. (1)

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminesence of noble metals,” Phys. Scr. 38(2), 174–179 (1988).
[Crossref]

Proc. Phys. Soc. (1)

D. Beaglehole, “The optical properties of the noble metals,” Proc. Phys. Soc. 87(2), 461–471 (1966).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Solid State Commun. (1)

E. Burstein, Y. J. Chen, C. Y. Chen, S. Lindquist, and E. Tosatti, “Giant Raman scattering by adsorbed molecules on metal surfaces,” Solid State Commun. 29(8), 567–570 (1979).
[Crossref]

Surf. Sci. (2)

T. E. Furtak and J. A. Reyes, “Critical analysis of theoretical models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93(2-3), 351–382 (1980).
[Crossref]

A. Otto, “Raman scattering from adsorbates on silver,” Surf. Sci. 92(1), 145–152 (1980).
[Crossref]

Thin Solid Films (1)

R. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 132, 313–314 (1998).

Other (4)

A. H. Wilson, The Theory of Metals (Cambridge University Press, 1936).

L. Le Thi Ngoc, T. Yuan, M. Odijk, A. van den Berg, H. Permentier, R. Bischoff, and E. T. Carlen, “Surface-enhanced Raman spectroelectrochemical analysis system with metalloporphyrin modified electrodes for drug metabolism investigation,” in Proceedings of the International Conference on Raman Spectroscopy (2014).

G. Varsanyi, Vibrational Spectra of Benzene Derivates (Academic Press, 1969).

N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon Press, 1936).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Select symmetry regions of the first Brillouin zone of the energy band E(k) diagram of gold. (a) X-symmetry point and interband transition ∆X. (b) L-symmetry point and interband transition ∆L. The electron wave vector kΠ points from the X- and L-symmetry points to the Γ-symmetry point, and k point in the direction of the W-symmetry point [7].
Fig. 2
Fig. 2 (a) Real and (b) Imaginary dielectric function data from gold thin films. Red solid circles [23], blue solid triangles [24], and black line from analytical model. The solid vertical lines indicate ∆X and ∆L. The dashed lines indicate the excitation energies ħω01 = 1.96 eV (red) and ħω02 = 2.33 eV (green).
Fig. 3
Fig. 3 Representative SEM images of nanostructured gold surfaces with array pitch Λg = 200 nm and nanogap spacing g = 10 nm. (a) Top view. (b) Cross-section view.
Fig. 4
Fig. 4 (a-d) 2D FDTD simulations of electric field profiles near gold nanogaps for different excitation energy and polarization with Λg = 200 nm and g = 10 nm. (yellow dashed lines indicate Au layer; red dashed lines indicate SiN layer and gray dashed lines indicate the Si layer). (a) Excitation energy ħω01 = 1.96 eV and p-polarization. (b) ħω01 = 1.96 eV and s-polarization. (c) ħω02 = 2.33 eV and p-polarization. (d) ħω02 = 2.33 eV and s-polarization. (e-f) 2D RCWA simulations of reflectance spectra from gold nanogap surfaces with pitch Λg = 200 nm. Solid lines indicate p-polarized reflectance and dashed-dotted lines indicate s-polarized reflectance (e) g = 10 nm. (f) g = 5 nm.
Fig. 5
Fig. 5 Representative photoluminescence spectra from planar as-deposited gold layers excited with a He-Ne laser (ħω01 = 1.96 eV) at different power levels. (a) 1 mW. (b) 2 mW. (c) 4 mW. A 100 ms integration time was used for all measurements.
Fig. 6
Fig. 6 Representative reflectance and photoluminescence spectra from three different nanostructured gold surfaces (Λg = 200 nm and different g) each with different surface plasmon resonance energy ħωSPR. The excitation energy (1.96 eV) is indicated with a dashed red line. The location of the ∆X interband transition is indicated with a dashed-dotted line. (a),(b) Surface S1 with δE≈260 meV. (c),(d) Surface S2 with δE≈150 meV. (e),(f) Surface S3 δE≈-50 meV. A He-Ne laser excitation source with 1 mW power and 100 ms integration time was used for all measurements. Note the different intensity scales in the photoluminescence plots.
Fig. 7
Fig. 7 (a) Reflectance spectra from a representative nanostructured gold surface (Λg = 200 nm, g = 10 nm) for different incident light polarizations (p-polarization: electric field polarization perpendicular to the length of the nanogap, and s-polarization: electric field polarization parallel to the length of the nanogap). (b) Photoluminescence spectra as the incident polarization alignment relative to the length of the nanogap structure is varied (inset: laser polarization alignment to nanogap structure). Right: Polar plot of the peak photoluminescence for different polarization alignments.
Fig. 8
Fig. 8 Photoluminescence spectra from planar gold layers using a Nd-YAG laser source (2.33 eV) at different power levels. (a) 1 mW. (b) 2 mW. (c) 4 mW. Note the different intensity scales. A 100 ms integration time was used for all measurements.
Fig. 9
Fig. 9 Reflectance and photoluminescence spectra from three different nanostructured gold surfaces (Λg = 200 nm and different g) each with different surface plasmon resonance energy ħωSPR. The excitation energy (2.33 eV) is indicated with a dashed green line. The location of the ∆X and ∆L interband transitions are indicated with dashed-dotted lines. (a),(b) Surface S1 with δE = −410 meV and δSX≈60 meV, p-polarized emission peak ħωPL,p≈1.98 eV, and s-polarized emission peak ħωPL,s≈2.2 eV. (c),(d) Surface S2 with δE≈-280 meV and δSX≈190 meV, p-polarized emission peak ħωPL,p≈2.08 eV, and s-polarized emission peak ħωPL,s≈2.2 eV. (e),(f) Surface S3 with δE≈-650 meV and δSX≈-180 meV, p-polarized emission peak ħωPL,p≈2.2 eV, and s-polarized emission peak ħωPL,s≈2.2 eV. All measurements conducted with the Nd-YAG laser power of 0.1 mW with 3 s integration time.
Fig. 10
Fig. 10 Photoluminescence spectra from an unmodified nanostructured gold surface (Λg = 200 nm, g = 10 nm) excited with a He-Ne laser source. A 100 ms integration time was used for all measurements. Blue dashed-dotted line highlights the general background continuum profile.
Fig. 11
Fig. 11 SERS spectra from a nanostructured gold surface (Λg = 200 nm, g = 10 nm) modified with benzenethiol SAM. Raman shift Δν scale located on the top axis. A He-Ne laser source with 100 ms integration time was used for all measurements. Blue dashed-dotted line highlights the general background continuum profile.
Fig. 12
Fig. 12 SERS spectrum from a nanostructured gold surface (Λg = 200 nm, g = 10 nm) modified with a 4-mercaptopyridine SAM. Raman shift Δν scale located on the top axis. A He-Ne laser source with 0.5 mW power and 5 s integration time was used for the measurement. Blue dashed-dotted line highlights the general background continuum profile.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ω ω p 2 ω 2 i γ p ω + χ X (ω)+ χ L (ω),
χ X,L (ω)= A X,L [ e iθ ( ω X,L ωi γ X,L ) 1 + e iθ ( ω X,L +ω+i γ X,L ) 1 ],

Metrics