Abstract

A simple methyl-terminated (-CH3) surface passivation approach has been employed to enhance the performance of the bilayer graphene/Si nanohole array (BLG/SiNH array) Schottky junction based self-powered near infrared photodetector (SPNIRPD). The as-fabricated SPNIRPD exhibits high sensitivity to light at near infrared region at zero bias voltage. The Ilight/Idark ratio measured is 1.43 × 107, which is more than an order of magnitude improvement compared with the sample without passivation (~6.4 × 105). Its corresponding responsivity and detectivity are 0.328 AW−1 and 6.03 × 1013 cmHz1/2W−1, respectively. The demonstrated results have confirmed the high-performance SPNIRPD compared with the photo-detectors of similar type and its great potential application in future optoelectronic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction

Feng-Xia Liang, Deng-Yue Zhang, Jiu-Zhen Wang, Wei-Yu Kong, Zhi-Xiang Zhang, Yi Wang, and Lin-Bao Luo
Opt. Express 24(23) 25922-25932 (2016)

Core/shell-structured upconversion nanophosphor and cadmium-free quantum-dot bilayer-based near-infrared photodetectors

A-Ra Hong, Jungyoon Kim, Su Yeon Kim, Seong-Il Kim, Kwangyeol Lee, and Ho Seong Jang
Opt. Lett. 40(21) 4959-4962 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Xu, Y. Y. Wang, H. F. Li, J. Q. Yao, and Y. H. Tsang, “104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser,” Opt. Express 15(7), 3991–3997 (2007).
    [Crossref] [PubMed]
  2. Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
    [Crossref]
  3. Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
    [Crossref]
  4. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
    [Crossref]
  5. X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
    [Crossref] [PubMed]
  6. E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  7. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [Crossref] [PubMed]
  8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  9. X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  10. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  11. Y. G. Wang, Z. S. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high power passive mode-locked Nd:GdVO4 laser operating at 1 µm,” J. Lightwave Technol. 30(20), 3259–3262 (2012).
    [Crossref]
  12. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
    [Crossref]
  13. A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  14. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
    [Crossref]
  15. W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
    [Crossref]
  16. L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
    [Crossref]
  17. Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
    [Crossref] [PubMed]
  18. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  19. Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
    [Crossref]
  20. Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
    [Crossref] [PubMed]
  21. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
    [Crossref] [PubMed]
  22. C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
    [Crossref] [PubMed]
  23. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  24. C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
    [Crossref] [PubMed]
  25. B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
    [Crossref] [PubMed]
  26. H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
    [Crossref] [PubMed]
  27. R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
    [Crossref]
  28. F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
    [Crossref]

2014 (2)

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

2013 (7)

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

2012 (3)

Y. G. Wang, Z. S. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high power passive mode-locked Nd:GdVO4 laser operating at 1 µm,” J. Lightwave Technol. 30(20), 3259–3262 (2012).
[Crossref]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

2011 (2)

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

2009 (4)

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

2007 (2)

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

D. G. Xu, Y. Y. Wang, H. F. Li, J. Q. Yao, and Y. H. Tsang, “104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser,” Opt. Express 15(7), 3991–3997 (2007).
[Crossref] [PubMed]

2006 (3)

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

2005 (1)

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

2003 (1)

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

An, X. H.

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

Avouris, P.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Aykol, M.

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Borysiak, M.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cai, W. W.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chang, C. C.

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

Chen, C. C.

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

Chen, D.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, J. J.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Cheng, J. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Cheng, Z. Z.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Colombo, L. G.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Crommie, M. F.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Cronin, S. B.

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

Dai, L.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Dai, Y.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Du, G. G.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Fang, Y.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Feng, M.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Fritsche, R.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Gan, L.

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Gao, P.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Gao, Z. W.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Garnett, E.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Girit, C.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Guo, X. F.

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Haick, H.

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

Han, B. Y.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Hao, Z.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Hochbaum, A. I.

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

Hu, H.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

Hu, J. G.

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Huang, J. A.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Huang, J. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Hunger, R.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Hurley, P. T.

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

Jaeckel, B.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Jaegermann, W.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jie, J. S.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Jin, W. F.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Jung, Y. J.

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

Kar, S.

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

Kempa, T. J.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

King, T. A.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Ko, D. K.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, J.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

Lee, S. T.

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Levi, A. F. J.

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

Lewis, N.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Lewis, N. S.

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

Li, F. Z.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Li, H. F.

Li, Q.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Li, X. S.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, Y. P.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Liang, F. X.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

Lieber, C. M.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Lin, Y. M.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Liu, C.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Liu, F. Z.

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

Liu, J.

Liu, Z. F.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Luo, J.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Luo, L. B.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

Lv, P.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Martin, M. C.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Martinez, A.

A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meng, H.

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mueller, T.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nie, B.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Peng, H. L.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Pierce, M. C.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Piner, R. D.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Qu, Z. S.

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Rozhin, A. G.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Ruan, S. C.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Ruoff, R. S.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Shen, Y. R.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Song, T.

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Sun, B. Q.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sun, Z. P.

A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Tan, P. H.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Tang, T. T.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Thomas, T.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Tian, B. Z.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Tsang, H. K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Tsang, Y. H.

Y. G. Wang, Z. S. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high power passive mode-locked Nd:GdVO4 laser operating at 1 µm,” J. Lightwave Technol. 30(20), 3259–3262 (2012).
[Crossref]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

D. G. Xu, Y. Y. Wang, H. F. Li, J. Q. Yao, and Y. H. Tsang, “104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser,” Opt. Express 15(7), 3991–3997 (2007).
[Crossref] [PubMed]

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Udell, C.

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Valdes-Garcia, A.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Wang, F.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Wang, F. Q.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Wang, L.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

Wang, M. Z.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

Wang, X. M.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Wang, Y. G.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Y. G. Wang, Z. S. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high power passive mode-locked Nd:GdVO4 laser operating at 1 µm,” J. Lightwave Technol. 30(20), 3259–3262 (2012).
[Crossref]

Wang, Y. Y.

Webb, L.

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Wei, H. F.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Wu, C. Y.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Wu, P. C.

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Wu, Y. C.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Wu, Y. M.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Xia, F. N.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xie, C.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Xu, D. G.

Xu, J. B.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, W. J.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Yan, P. G.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Yang, P. D.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

Yao, J. Q.

Ye, Y.

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Yu, B.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

Yu, G. H.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, N. F.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, S. H.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Yu, Y. Q.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Zeng, L. H.

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Zettl, A.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Zhang, F. T.

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Zhang, G. L.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Zhang, X. W.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Zhang, X. Z.

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Zhang, Y. B.

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Zhao, J. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Zheng, X. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Zhou, Y.

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Zhu, X. L.

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Zhu, Y. W.

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013).
[Crossref] [PubMed]

ACS Nano (1)

C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky Junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Adv. Mater. (1)

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[Crossref]

Chem. Mater. (1)

F. T. Zhang, B. Q. Sun, T. Song, X. L. Zhu, and S. T. Lee, “Air Stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Chin. Phys. Lett. (1)

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29(11), 114206 (2012).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

H. Haick, P. T. Hurley, A. I. Hochbaum, P. D. Yang, and N. S. Lewis, “Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires,” J. Am. Chem. Soc. 128(28), 8990–8991 (2006).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

W. F. Jin, Y. Ye, L. Gan, B. Yu, P. C. Wu, Y. Dai, H. Meng, X. F. Guo, and L. Dai, “Self-powered high performance photodetectors based on CdSe nanobelt/graphene schottky junctions,” J. Mater. Chem. 22(7), 2863–2867 (2012).
[Crossref]

J. Phys. Chem. C (1)

Y. M. Wu, X. Z. Zhang, J. S. Jie, C. Xie, X. W. Zhang, B. Q. Sun, Y. Wang, and P. Gao, “Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Nano Lett. (4)

X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. G. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11(5), 1863–1867 (2011).
[Crossref] [PubMed]

X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13(3), 909–916 (2013).
[Crossref] [PubMed]

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nanoscale (1)

Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, and L. Dai, “Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene schottky junctions,” Nanoscale 5(12), 5576–5581 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Nature (2)

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Opt. Commun. (2)

Y. H. Tsang, T. A. King, T. Thomas, C. Udell, and M. C. Pierce, “Efficient high power Yb3+ silica fiber laser cladding pumped at 1064 nm,” Opt. Commun. 215(4–6), 381–387 (2003).
[Crossref]

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser,” Opt. Commun. 259(1), 236–241 (2006).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. Webb, and N. Lewis, “Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy,” Phys. Rev. B 72(4), 045317 (2005).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Small (1)

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of the BLG/SiNH array Schottky junction SPNIRPD. (b) Typical cross-sectional view SEM image of the as-prepared SiNH array. Inset shows the corresponding plane view SEM image of nano array. Scale bars in the inset are 8 μm. (d) Re〉ection spectra of planar Si, SiNH array, and CH3-SiNH array. Inset shows Raman spectrum of the BLG.
Fig. 2
Fig. 2 (a) I-V curves of the BLG/SiNH array Schottky junction with and without methyl-terminated at ambient condition in the dark. Inset shows the same I-V characteristics curves of the both devices but with y-axis in log scale. (b) I-V characteristic curves of BLG/CH3-SiNH array Schottky junction at temperature ranging from 90 to 300 K. (c) I0 at varied temperature is deduced by extrapolating the I-V curves to the vertical axis at V = 0 V. (d) Dependence of barrier height ΦB on temperature.
Fig. 3
Fig. 3 (a) The photovoltaic characteristics of the both devices. (b) The photoresponse of the both devices.
Fig. 4
Fig. 4 (a) Response of the Schottky junction device to the pulsed photoirradiation at frequencies of 10 Hz and 2000 Hz. (b) The relative balance versus frequency of the pulsed NIR light. (c) A single normalized cycle measured at 2000 Hz to estimate both rise time (τr) and fall time (τf) of the SPNIRPD with and without methyl-terminated.
Fig. 5
Fig. 5 (a) Energy band diagram of SPNIRPD before and after surface passivation under light illumination. (b) Responsivity of the Schottky junction under illumination of the different wavelength light.

Tables (1)

Tables Icon

Table 1 Summary of the devices performance of the present NIRPD and other photodetectors with similar device structures

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 (exp( qV nkT )1)AA*exp( q Φ B kT )exp( qV nkT )
R(A W 1 )= I p I d P opt =η( qλ hc )G
D*= A 1 2 R/ (2q I d ) 1 2 = A 1 2 ( I p I d P opt )/ (2q I d ) 1 2

Metrics