Abstract

A monolithic polarization maintaining fiber chirped pulse amplification system with 25 cm Yb3+-doped high efficiency media fiber that generates 62 µJ sub-400 fs pulses with 25 W at 1.03 µm has recently been demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 µm

Xiang Peng, Kyungbum Kim, Michael Mielke, Stephen Jennings, Gordon Masor, Dave Stohl, Arturo Chavez-Pirson, Dan T. Nguyen, Dan Rhonehouse, Jie Zong, Dmitriy Churin, and N. Peyghambarian
Opt. Express 22(3) 2459-2464 (2014)

High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation

Xiang Peng, Kyungbum Kim, Michael Mielke, Stephen Jennings, Gordon Masor, Dave Stohl, Arturo Chavez-Pirson, Dan T. Nguyen, Dan Rhonehouse, Jie Zong, Dmitriy Churin, and N. Peyghambarian
Opt. Express 21(21) 25440-25451 (2013)

Higher-order mode fiber enables high energy chirped-pulse amplification

Xiang Peng, Kyungbum Kim, Michael Mielke, Tim Booth, Jeffrey W. Nicholson, John M. Fini, Xiaoping Liu, Anthony DeSantolo, Paul S. Westbrook, Robert S. Windeler, Eric M. Monberg, Frank V. DiMarcello, Cliff Headley, and David J. DiGiovanni
Opt. Express 21(26) 32411-32416 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Gaudiosi, M. R. Greenberg, D. Nussdorfer, M. Shirk, E. Juban, M. M. Mielke, and T. Booth, “Ultrafast Lasers in Industrial Solutions,” in CLEO:2013, OSA Technical Digest (Optical Society of America, 2013), paper CM1H.5.
  2. M. M. Mielke, “High Speed, All-Laser Precision Machining of Gorilla Glass for Consumer Device Displays,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2014), paper ATh1A.4.
  3. X. Peng, K. Kim, M. Mielke, S. Jennings, G. Masor, D. Stohl, A. Chavez-Pirson, D. T. Nguyen, D. Rhonehouse, J. Zong, D. Churin, and N. Peyghambarian, “High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation,” Opt. Express 21(21), 25440–25451 (2013).
    [PubMed]
  4. X. Peng, K. Kim, M. Mielke, S. Jennings, G. Masor, D. Stohl, A. Chavez-Pirson, D. T. Nguyen, D. Rhonehouse, J. Zong, D. Churin, and N. Peyghambarian, “Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 µm,” Opt. Express 22(3), 2459–2464 (2014).
    [Crossref] [PubMed]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
  6. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
    [Crossref] [PubMed]
  7. J. W. Nicholson, J. M. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3M.3.
  8. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11(12), 1385–1391 (2003).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2010 (1)

2007 (1)

2003 (1)

Chavez-Pirson, A.

Churin, D.

Clarkson, W. A.

Eidam, T.

Jennings, S.

Kim, K.

Limpert, J.

Masor, G.

Mielke, M.

Moses, E.

Nguyen, D. T.

Nilsson, J.

Oron, D.

Peng, X.

Peyghambarian, N.

Rhonehouse, D.

Richardson, D. J.

Röser, F.

Rothhardt, J.

Schimpf, D. N.

Schmidt, O.

Silberberg, Y.

Stohl, D.

Thiberge, S.

Tünnermann, A.

Yelin, D.

Zong, J.

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Other (3)

J. W. Nicholson, J. M. Fini, X. Liu, A. DeSantolo, P. Westbrook, R. Windeler, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3M.3.

D. M. Gaudiosi, M. R. Greenberg, D. Nussdorfer, M. Shirk, E. Juban, M. M. Mielke, and T. Booth, “Ultrafast Lasers in Industrial Solutions,” in CLEO:2013, OSA Technical Digest (Optical Society of America, 2013), paper CM1H.5.

M. M. Mielke, “High Speed, All-Laser Precision Machining of Gorilla Glass for Consumer Device Displays,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2014), paper ATh1A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the monolithic PM fiber CPA laser system generating 62 µJ femtosecond pulses at 1.03 µm. MLL: mode-locked fiber laser, preamp1 & preamp2: preamplifiers
Fig. 2
Fig. 2 (a) Signal power from booster (solid square) and pulse compressor (solid diamond) vs. pump power, (b) optical spectra of input and output of the booster. The inset shows the same optical spectra in logarithmic scale.
Fig. 3
Fig. 3 Background free, SHG intensity autocorrelation traces of (a) <5uJ output energy from the system pulse compressor, (b) 62uJ output energy from the system pulse compressor without compensating SPM and (c) with compensating SPM, (d) Pulse Broadening at different output energy from the system pulse compressor without compensating SPM
Fig. 4
Fig. 4 a) Beam diameter vs. axial distance from the focal plane of a reference lens. These data are used to calculate M2 of the Yb3+-doped LMA HEM amplifier output, with pulse energy of 38 μJ, following ISO11146-2 protocol. The inset shows the near field and far field beam profiles captured with CCD camera

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B= 2π λ n 2 E energy (z) Δ τ stretched A eff dz

Metrics