Abstract

Optical Nyquist pulse generation based on a time lens with subsequent optical filtering is proposed. A nearly chirp-free 10-GHz 8.1-ps Nyquist pulse generator is experimentally demonstrated. By inserting group velocity dispersion (GVD) between cascaded phase and amplitude modulators, 11 tones ultraflat optical frequency comb (OFC) of 10-GHz frequency spacing within 0.9 dB power variation is obtained. The quasi-rectangular shape spectrum is then filtered out with a tunable rectangular-shaped optical band-pass filter (OBPF) and the quasi-linear chirp is compensated by a segment of standard single mode fiber (SSMF). By changing the wavelength of the continuous wave (CW) light, nearly chirp-free Nyquist pulses over C band are obtained. Furthermore, simultaneous dual-wavelength pulse generation is also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator

Jian Wu, Jizhao Zang, Yan Li, Deming Kong, Jifang Qiu, Siyuan Zhou, Jindan Shi, and Jintong Lin
Opt. Express 22(17) 20463-20472 (2014)

320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe
Opt. Express 22(1) 110-118 (2014)

Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch

Toshihiko Hirooka, Daiki Seya, Koudai Harako, Daiki Suzuki, and Masataka Nakazawa
Opt. Express 23(16) 20858-20866 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [Crossref] [PubMed]
  2. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
    [Crossref]
  3. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
    [Crossref]
  4. H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenløwe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express 19(26), B343–B349 (2011).
    [Crossref] [PubMed]
  5. T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
    [Crossref]
  6. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  7. T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
    [Crossref] [PubMed]
  8. T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20(18), 19836–19849 (2012).
    [Crossref] [PubMed]
  9. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CTh5D.5.
    [Crossref]
  10. H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17), 3287–3290 (2013).
    [Crossref] [PubMed]
  11. J. Zhao and A. D. Ellis, “Offset-QAM based coherent WDM for spectral efficiency enhancement,” Opt. Express 19(15), 14617–14631 (2011).
    [Crossref] [PubMed]
  12. R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OTu2I. 1.
    [Crossref]
  13. T. Yang, J. Dong, S. Liao, D. Huang, and X. Zhang, “Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers,” Opt. Express 21(7), 8508–8520 (2013).
    [Crossref] [PubMed]
  14. K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013).
    [Crossref] [PubMed]
  15. M. A. Sotol, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CM4G. 3.
  16. Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Cost-effective optical Nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper W1G. 5.
    [Crossref]
  17. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
    [Crossref]
  18. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
    [Crossref]
  19. D. Wang, L. Huo, Q. Wang, and C. Lou, “An ultrashort optical Nyquist pulse generator based on frequency chirp linearization and spectrum slicing,” in OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology, 786–787 (2014).
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chap. 2.

2013 (3)

2012 (3)

2011 (2)

2010 (1)

2009 (1)

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

2006 (2)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

1994 (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Boerner, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Chen, M.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Clausen, A.

Clausen, A. T.

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Dong, J.

Ellis, A. D.

Ferber, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Futami, F.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Galili, M.

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Gong, T.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Guan, P.

Hansen Mulvad, H. C.

Harako, K.

Hirooka, T.

Hu, H.

Huang, D.

Inoue, T.

Jensen, J. B.

Jeppesen, P.

Jian, S.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Kroh, M.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Kurosu, T.

Li, T.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Liao, S.

Liu, P.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Lu, D.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Ludwig, R.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Marembert, V.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Mulvad, H. C. H.

Nakazawa, M.

Namiki, S.

Oxenløwe, L. K.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Peucheret, C.

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Ruan, P.

Schmidt-Langhorst, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Schubert, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Seya, D.

Tan, H. N.

Tanizawa, K.

Tao, P.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Wang, M.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Watanabe, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Weber, H. G.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Yan, F.

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Yang, T.

Zhang, X.

Zhao, J.

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Electron. Lett. (1)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20(1), 36–38 (2006).
[Crossref]

Opt. Commun. (1)

T. Gong, F. Yan, D. Lu, M. Chen, P. Liu, P. Tao, M. Wang, T. Li, and S. Jian, “Demonstration of single channel 160-Gb/s OTDM 100-km transmission system,” Opt. Commun. 282(17), 3460–3463 (2009).
[Crossref]

Opt. Express (8)

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20(18), 19836–19849 (2012).
[Crossref] [PubMed]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[Crossref] [PubMed]

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenløwe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express 19(26), B343–B349 (2011).
[Crossref] [PubMed]

J. Zhao and A. D. Ellis, “Offset-QAM based coherent WDM for spectral efficiency enhancement,” Opt. Express 19(15), 14617–14631 (2011).
[Crossref] [PubMed]

T. Yang, J. Dong, S. Liao, D. Huang, and X. Zhang, “Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers,” Opt. Express 21(7), 8508–8520 (2013).
[Crossref] [PubMed]

K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (7)

R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OTu2I. 1.
[Crossref]

M. A. Sotol, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CM4G. 3.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Cost-effective optical Nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper W1G. 5.
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

D. Wang, L. Huo, Q. Wang, and C. Lou, “An ultrashort optical Nyquist pulse generator based on frequency chirp linearization and spectrum slicing,” in OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology, 786–787 (2014).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experimental setup of the proposed optical Nyquist pulse generator.
Fig. 2
Fig. 2 Simulation results of temporal amplitude (blue solid line), phase (black solid line), and chirp (red solid line) of the optical signal after (a) PM, (b) DCF, (c) MZM, respectively.
Fig. 3
Fig. 3 (a) The flatness (in the unit of dB) and (b) the number of comb lines as functions of the phase modulation index (PMI) and the dispersion of the DCF; (c) the maximum number of comb lines as a function of PMI under certain power variation: 0.5 dB (black dotted lines), 1 dB (red dash lines) and 2 dB (blue solid lines).
Fig. 4
Fig. 4 Spectrum at the output of the MZM: (a) without dispersion, (b) with −20 ps/nm accumulated dispersion and (c) with −25 ps/nm accumulated dispersion.
Fig. 5
Fig. 5 (a) the corresponding temporal waveform of the spectrum after dispersion compensation without optical filtering (blue solid lines) and the fitted sinc function curve (red dotted lines); (b) the corresponding temporal waveform of the spectrum after dispersion compensation with optical filtering (blue solid lines) and the fitted sinc function curve (red dotted lines).
Fig. 6
Fig. 6 The phase of the generated pulse (red dots) and the fitted linear curve (blue solid lines).
Fig. 7
Fig. 7 The eye diagram of the multiplexed DPSK signal (blue solid lines) and the symbol interval (red dots).
Fig. 8
Fig. 8 (a) Pulses at different wavelengths before launching into MZM (color solid lines) and the time switching window of MZM (black dash lines); (b) the power variation of spectrum at the output of MZM as the central wavelength is from 1546.96 nm to 1559.2 nm.
Fig. 9
Fig. 9 (a) Spectrum and (b) temporal waveform of the obtained pulse without optical filtering; (c) spectrum and (d) temporal waveform of the obtained pulse with optical filtering. The red dotted lines represent the fitted sinc function curve.
Fig. 10
Fig. 10 Temporal waveforms of the generated pulse at different wavelengths.
Fig. 11
Fig. 11 The TBP for different wavelengths (blue dotted lines) and the transform limited TBP (black dashed lines).
Fig. 12
Fig. 12 Temporal waveforms of the generated pulse at (a) 1548.08 nm and (b) 1562.77 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N(t)= sin(πt/T) πt/T cos(απt/T) 1 (2απt/T) 2
E out1 (t)= E in (t)exp[iθcos(2π f m t)]
θ= V m V π π
f(t)=2πθ f m sin(2π f m t)
E Z + α 2 E+ i β 2 2 2 E T 2 β 3 6 3 E T 3 =iγ | E | 2 E
E out3 = E out2 2 { exp( i π V πMZM V bias )exp[ i π 2 V πMZM Vsin( 2π f m t+φ ) ]+exp[i π 2 V πMZM Vsin(2π f m t+φ)] }
TBP=ΔτΔν=Δτ(10.272α)/T
Δτ= 2πc λ 1 β 2 L 2πc λ 2 β 2 L=2πc β 2 L Δλ λ 1 λ 2
Δτ=MT
Δλ=M λ 1 λ 2 T 2πc β 2 L

Metrics