Abstract

We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo photothermal optical coherence tomography of gold nanorod contrast agents

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala
Biomed. Opt. Express 3(11) 2881-2895 (2012)

Plasmon-resonant gold nanorods as low backscattering albedo contrast agents

Amy L. Oldenburg, Matthew N. Hansen, Daniel A. Zweifel, Alexander Wei, and Stephen A. Boppart
Opt. Express 14(15) 6724-6738 (2006)

Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography

Desmond C. Adler, Shu-Wei Huang, Robert Huber, and James G. Fujimoto
Opt. Express 16(7) 4376-4393 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).
  3. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref] [PubMed]
  4. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
    [Crossref] [PubMed]
  5. Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
    [Crossref] [PubMed]
  6. K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
    [Crossref] [PubMed]
  7. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32(11), 1438–1440 (2007).
    [Crossref] [PubMed]
  8. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [Crossref] [PubMed]
  9. C. Yang, L. E. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29(17), 2016–2018 (2004).
    [Crossref] [PubMed]
  10. T. S. Kim, S. J. Jang, N. Oh, Y. Kim, T. Park, J. Park, and W. Y. Oh, “Dual-wavelength band spectroscopic optical frequency domain imaging using plasmon-resonant scattering in metallic nanoparticles,” Opt. Lett. 39(10), 3082–3085 (2014).
    [Crossref] [PubMed]
  11. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
    [Crossref]
  12. E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
    [Crossref] [PubMed]
  13. Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
    [Crossref] [PubMed]
  14. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  15. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  16. B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
    [Crossref] [PubMed]
  17. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
    [Crossref] [PubMed]
  18. W. Zhou, X. Liu, and J. Ji, “Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat,” J. Mater. Chem. 22(28), 13969–13976 (2012).
    [Crossref]
  19. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
    [Crossref] [PubMed]
  20. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
    [Crossref] [PubMed]
  21. A. de la Zerda, S. Prabhulkar, V. L. Perez, M. Ruggeri, A. S. Paranjape, F. Habte, S. S. Gambhir, and R. M. Awdeh, “Optical coherence contrast imaging using gold nanorods in living mice eyes,” Clin. Experiment. Ophthalmol., http://europepmc.org/abstract/med/24533647 (2014).
    [Crossref]
  22. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [Crossref] [PubMed]
  23. A. L. Oldenburg, R. K. Chhetri, J. M. Cooper, W. C. Wu, M. A. Troester, and J. B. Tracy, “Motility-, autocorrelation-, and polarization-sensitive optical coherence tomography discriminates cells and gold nanorods within 3D tissue cultures,” Opt. Lett. 38(15), 2923–2926 (2013).
    [Crossref] [PubMed]
  24. G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
    [Crossref]
  25. L. Qiu, T. A. Larson, E. Vitkin, L. Guo, E. B. Hanlon, I. Itzkan, K. V. Sokolov, and L. T. Perelman, “Gold nanorod light scattering labels for biomedical imaging,” Biomed. Opt. Express 1(1), 135–142 (2010).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (3)

2011 (2)

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

2010 (2)

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

L. Qiu, T. A. Larson, E. Vitkin, L. Guo, E. B. Hanlon, I. Itzkan, K. V. Sokolov, and L. T. Perelman, “Gold nanorod light scattering labels for biomedical imaging,” Biomed. Opt. Express 1(1), 135–142 (2010).
[Crossref] [PubMed]

2009 (2)

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (4)

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

2005 (3)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
[Crossref] [PubMed]

2004 (2)

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adam, L.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Anderson, L. J.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Applegate, B. E.

Armes, S. P.

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

Au, K. M.

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

Baev, A.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Barnett, E. M.

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

Barton, J. K.

Bickford, L. R.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Boppart, S.

Boppart, S. A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

Bullok, K. E.

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

Cai, H.-X.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Carney, P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chhetri, R. K.

Choma, M. A.

Cooper, J. M.

Cui, Y.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Day, E. S.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Dinney, C. P.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

Drezek, R. A.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Duvall, C. L.

Elangovan, B.

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

Fingler, J.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujii, M.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Fujimoto, J. G.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, L.

Hafner, J. H.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Hanlon, E. B.

Hansen, M. N.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

He, G. S.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heng, X.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

Hornegger, J.

Hu, R.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Huang, D.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Itzkan, I.

Izatt, J. A.

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Jang, S. J.

Ji, J.

W. Zhou, X. Liu, and J. Ji, “Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat,” J. Mater. Chem. 22(28), 13969–13976 (2012).
[Crossref]

Jia, Y.

Kim, T. S.

Kim, Y.

Kiya, A.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Kraus, M. F.

Larson, T. A.

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Lee, S.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Liu, X.

W. Zhou, X. Liu, and J. Ji, “Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat,” J. Mater. Chem. 22(28), 13969–13976 (2012).
[Crossref]

Lu, Z.

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

Marks, D. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

Matcher, S. J.

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

Mayer, K. M.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

McDowell, E.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

McGuckin, L. E.

Meyer, T. A.

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Nakamura, Y.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Nakashima, N.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Niidome, Y.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Oh, N.

Oh, W. Y.

Oldenburg, A. L.

A. L. Oldenburg, R. K. Chhetri, J. M. Cooper, W. C. Wu, M. A. Troester, and J. B. Tracy, “Motility-, autocorrelation-, and polarization-sensitive optical coherence tomography discriminates cells and gold nanorods within 3D tissue cultures,” Opt. Lett. 38(15), 2923–2926 (2013).
[Crossref] [PubMed]

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

Park, J.

Park, T.

Patil, C. A.

Payne, C. M.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Perelman, L. T.

Piwnica-Worms, D.

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

Potsaid, B.

Prasad, P. N.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qiu, L.

Ralston, T. S.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

Romanowski, M.

Rostro-Kohanloo, B. C.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Simon, J. D.

Skala, M. C.

Sokolov, K. V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subhash, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taga, Y.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Tan, O.

Tokayer, J.

Tracy, J. B.

Troester, M. A.

Troutman, T. S.

Tsuru, Y.

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Tucker-Schwartz, J. M.

Vitkin, E.

Wang, Y.

Wei, A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[Crossref] [PubMed]

West, J. L.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Wu, J.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

Wu, W. C.

Xu, C.

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

Yang, C.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

C. Yang, L. E. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29(17), 2016–2018 (2004).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

Yong, K.-T.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Zal, T.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Zhang, X.-H.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Zhong, M.

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, X. Liu, and J. Ji, “Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat,” J. Mater. Chem. 22(28), 13969–13976 (2012).
[Crossref]

Zhu, J.

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Zweifel, D. A.

Adv. Mater. (2)

K. M. Au, Z. Lu, S. J. Matcher, and S. P. Armes, “Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging,” Adv. Mater. 23(48), 5792–5795 (2011).
[Crossref] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Biomed. Opt. Express (2)

Invest. Ophthalmol. Vis. Sci. (1)

E. M. Barnett, B. Elangovan, K. E. Bullok, and D. Piwnica-Worms, “Selective cell uptake of modified Tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models,” Invest. Ophthalmol. Vis. Sci. 47(6), 2589–2595 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 41208 (2005).
[Crossref] [PubMed]

Z. Yaqoob, E. McDowell, J. Wu, X. Heng, J. Fingler, and C. Yang, “Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent,” J. Biomed. Opt. 11(5), 054017 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (2)

W. Zhou, X. Liu, and J. Ji, “Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat,” J. Mater. Chem. 22(28), 13969–13976 (2012).
[Crossref]

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

G. S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. N. Prasad, “Scattering and absorption cross-section spectral measurements of gold nanorods in water,” J. Phys. Chem. C 114(7), 2853–2860 (2010).
[Crossref]

Nanoscale (1)

Y. Nakamura, Y. Tsuru, M. Fujii, Y. Taga, A. Kiya, N. Nakashima, and Y. Niidome, “Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” Nanoscale 3(9), 3793–3798 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

B. C. Rostro-Kohanloo, L. R. Bickford, C. M. Payne, E. S. Day, L. J. Anderson, M. Zhong, S. Lee, K. M. Mayer, T. Zal, L. Adam, C. P. Dinney, R. A. Drezek, J. L. West, and J. H. Hafner, “The stabilization and targeting of surfactant-synthesized gold nanorods,” Nanotechnology 20(43), 434005 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).

A. de la Zerda, S. Prabhulkar, V. L. Perez, M. Ruggeri, A. S. Paranjape, F. Habte, S. S. Gambhir, and R. M. Awdeh, “Optical coherence contrast imaging using gold nanorods in living mice eyes,” Clin. Experiment. Ophthalmol., http://europepmc.org/abstract/med/24533647 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Transmission electron micrograph of monodisperse GNR coated with PEG and Tat cell internalization peptide. Scale bar is 100 nm. (b) Normalized extinction spectra of the synthesized GNR with SPR at 900 nm (10 × 50 nm, black) and 980 nm (10 × 59 nm, gray). Normalized intensity spectra of the commercial OCT (XR, red) and swept-source OCT systems (SS, blue).
Fig. 2
Fig. 2 (a) Schematic of the experimental setup. (b) Transmission spectra of water and stock GNR solution (5 × 1011 nanorods/mL) over a 4 mm pathlength. (c) Transmission spectra of water and dilute GNR solution (5 × 1010 nanorods/mL) overlapped with a negligible difference.
Fig. 3
Fig. 3 (A1) Raw interferogram (black) was split into short (blue) and long (red) wavelength halves. (A2) Each half was divided into four narrower bands using Gaussian filters to improve detection. (B1) Histogram distribution plot showing the spectral shift of the OCT signal from 0.1% intralipid (tissue phantom) and dilute GNR with SPR at 870 nm (5 × 1010 nanorods/mL) without spectral fractionation. (B2) The same data processed with spectral fractionation. The spectral shift was determined by the ratio between the intensity of short (<840 nm) and long (>840 nm) wavelength components of the OCT signal and converted to a dB scale. Intralipid samples (black) showed normal distributions centered on zero. The GNR samples showed SLoW ratios with means within 1 SD (B1) or ~2 SD (B2) less than that of the intralipid distribution. (C1) Cross-sectional OCT images of dilute GNR in solution with SLoW ratios calculated without spectral fractionation and represented on a color scale. SLoW ratio (dB) more than 3.09 SD red shifted from the intralipid reference mean (blue line in (B1)) is shown in red, SLoW ratio more than 3.09 SD blue shifted is shown in blue. OCT signal intensity is shown on an inverse gray scale. Aggregation at the test tube wall produced red-shifted pixels with some blue-shifted pixels. Below the test tube interface, 1% of the GNR signal could be detected. (C2) Cross-sectional OCT image with SLoW ratios calculated with spectral fractionation. Below the aggregation at the test tube interface, 18% of the GNR signal could be detected.
Fig. 4
Fig. 4 OCT images of (a) 0.1% intralipid, (b) dilute GNR with SPR at 870 nm, and (c) dilute GNR-in-intralipid. The OCT signal intensity is shown on an inverse gray scale, and the SLoW ratio is color-coded with cutoffs set at ± 3.09 SD ( ± 1 dB) of the spectral distribution of intralipid (Fig. 3(B2)). Intralipid (a) showed rare color pixels due to noise. The red GNR signal could be clearly visualized by itself (b) and when mixed with intralipid (c). The GNR aggregation layer at the test tube interface on top showed mostly red pixels with a few blue pixels.
Fig. 5
Fig. 5 Histogram distribution plots of the spectral shift of the OCT signal from 0.1% intralipid (tissue phantom) and dilute GNR with SPR at 963 nm. The signal’s spectral shift was measured by the ratio between the intensity of short (<1050 nm) and long (>1050 nm) wavelength components of the OCT signal and converted to a dB scale. Intralipid (black) showed normal distributions centered on zero. The GNR showed a SLoW ratio with a mean 3 SD more than that of the intralipid distribution.
Fig. 6
Fig. 6 OCT images of (a) 0.1% intralipid and (b) dilute GNR with SPR at 963 nm. The OCT signal intensity is shown on an inverse gray scale, and SLoW ratio information is color-coded with cutoffs set at ± 3.09 SD ( ± 0.9 dB) of the spectral distribution of intralipid (Fig. 5). Intralipid (a) showed sparse color pixels due to noise. The blue GNR signal (b) could be clearly visualized. A few red pixels are also seen in solution and in the aggregation layer at the test tube interface on top.
Fig. 7
Fig. 7 OCT images of (a) 1% gelatin, (b) unlabeled cultured RPE cells, and (c) RPE cells labeled with GNR. The spectral shift of the backscattered/reflected OCT signal is shown as a SLoW ratio with a blue-white-red color scheme with cutoffs set at ± 3.09 SD ( ± 2 dB) of the spectral distribution of unlabeled cells. The intensity of the OCT signal is shown on an inverse gray scale. GNR-labeled RPE cells (c) could be distinguished by their spectral shift (red dots), in sharp contrast with unlabeled cells (b). A few GNR-labeled cells showed blue, most likely due to the spread in the GNR spectrum associated with GNR heterogeneity or aggregation.
Fig. 8
Fig. 8 OCT image of (unlabeled) human retina in vivo. The OCT signal intensity is shown on an inverse gray scale, and SLoW ratio information is color-coded with cutoffs set at ± 3.09 SD ( ± 2.5 dB) of the spectral distribution of retinal tissue. There were no areas of localized spectral shifts except at a few pixels between the inner segment/outer segment junction (IS/OS) and retinal pigment epithelium (RPE).

Tables (1)

Tables Icon

Table 1 Measurements of the SPR peaks and zeta potentials of CTAB-coated GNR

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(k)=Re{ S(k) r s (k,z) r r (k)exp(i2kΔz) dz }
I(z)= F 1 { I(k) }
SLoW(z)= j=1 M si=1 N | I j,si (z) | j=1 M li=1 N | I j,li (z) | = j=1 M si=1 N | F 1 { I j (k) G si (k) } | j=1 M li=1 N | F 1 { I j (k) G li (k) } |
S c = M GNR M S σ s

Metrics