Abstract

We have investigated the effect of multiple scattering to optical forces on a particle in the evanescent field produced by an optical waveguide. Considering the multiple scattering between the sphere and the waveguide, we extend the formalism based on transition matrix and reflection matrix to calculate the optical forces on a sphere near an optical waveguide. Numerical results show that the influence that multiple scattering has on the optical forces can’t be ignored, especially when the structure resonance of the particle arises. Moreover, the effect of multiple scattering to optical forces is also studied in detail on the condition that the distance between the sphere and the waveguide is within the effective operating distance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The effects of multiple scattering to optical forces on a sphere in an evanescent field

Wei-Ping Zang, Yang Yang, Zhi-Yu Zhao, and Jian-Guo Tian
Opt. Express 21(10) 12373-12384 (2013)

Optical forces from evanescent Bessel beams, multiple reflections, and Kerker conditions in magnetodielectric spheres and cylinders

Juan Miguel Auñón and Manuel Nieto-Vesperinas
J. Opt. Soc. Am. A 31(9) 1984-1992 (2014)

Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field

Romain Quidant, Dmitri Petrov, and Gonçal Badenes
Opt. Lett. 30(9) 1009-1011 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
    [Crossref]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  4. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [Crossref] [PubMed]
  5. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [Crossref] [PubMed]
  6. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [Crossref] [PubMed]
  7. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
    [Crossref]
  8. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
    [Crossref] [PubMed]
  9. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  10. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  11. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
    [Crossref] [PubMed]
  12. E. Almass and I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12(12), 2429–2438 (1995).
    [Crossref]
  13. J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008).
    [Crossref]
  14. J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).
  15. Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
    [Crossref]
  16. H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
    [Crossref]
  17. H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
    [Crossref]
  18. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991).
    [Crossref]
  19. G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
    [Crossref]
  20. M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
    [Crossref]
  21. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152(4–6), 376–384 (1998).
    [Crossref]
  22. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A(1-2), 209–242 (1986).
    [Crossref]
  23. D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf. 111(5), 802–809 (2010).
    [Crossref]
  24. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
    [Crossref]
  25. W. P. Zang, Y. Yang, Z. Y. Zhao, and J. G. Tian, “The effects of multiple scattering to optical forces on a sphere in an evanescent field,” Opt. Express 21(10), 12373–12384 (2013).
    [Crossref] [PubMed]
  26. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
    [Crossref]
  27. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).
  28. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).
    [Crossref]
  29. L. Donald, Lee, Electromagnetic principles of integrated optics (John Wiley, 1986).
  30. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).
  31. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
    [Crossref]
  32. S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
    [Crossref]

2013 (2)

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

W. P. Zang, Y. Yang, Z. Y. Zhao, and J. G. Tian, “The effects of multiple scattering to optical forces on a sphere in an evanescent field,” Opt. Express 21(10), 12373–12384 (2013).
[Crossref] [PubMed]

2012 (1)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

2010 (2)

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf. 111(5), 802–809 (2010).
[Crossref]

2009 (2)

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

2008 (3)

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008).
[Crossref]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[Crossref]

2007 (1)

2006 (1)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

2005 (4)

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[Crossref]

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[Crossref]

G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
[Crossref]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
[Crossref]

2002 (1)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

1998 (1)

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152(4–6), 376–384 (1998).
[Crossref]

1997 (1)

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

1996 (1)

1995 (1)

1992 (1)

1991 (1)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

1988 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (3)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A(1-2), 209–242 (1986).
[Crossref]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Ahluwalia, B. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
[Crossref]

Almass, E.

Ashkin, A.

Aslan, M.

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
[Crossref]

Aslan, M. M.

G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
[Crossref]

Astratov, V. N.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
[Crossref]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Bjorkholm, J. E.

Bobbert, P. A.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A(1-2), 209–242 (1986).
[Crossref]

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Brevik, I.

Carnegie, D.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Chan, C. T.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008).
[Crossref]

Chang, S.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

Chu, S.

Doicu, A.

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152(4–6), 376–384 (1998).
[Crossref]

Dziedzic, J. M.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Grujic, K.

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[Crossref]

Hellesø, O. G.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
[Crossref] [PubMed]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[Crossref]

Huser, T.

Jaising, H.

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[Crossref]

Jaising, H. Y.

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[Crossref]

Jo, J. H.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

Jones, P. H.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Kawata, S.

Kim, J. T.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Lee, S. S.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

Li, Y.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Lin, Z. F.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Løvhaugen, P.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Luff, B. J.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

Mackowski, D. W.

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf. 111(5), 802–809 (2010).
[Crossref]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[Crossref]

Maslov, A. V.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

McCourt, P.

Mengüç, M. P.

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
[Crossref]

G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Ng, J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008).
[Crossref]

Ng, L. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Rafailov, E.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Saad, Y.

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Saffari, N.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Schultz, M. H.

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Stride, E.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Subramanian, A. Z.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Sugiura, T.

Svitelskiy, O. V.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Tani, T.

Tian, J. G.

Tomita, O. G. H.

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[Crossref]

Videen, G.

G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
[Crossref]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
[Crossref]

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991).
[Crossref]

Vlieger, J.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A(1-2), 209–242 (1986).
[Crossref]

Wilkinson, J. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

Wriedt, T.

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152(4–6), 376–384 (1998).
[Crossref]

Xiao, J. J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Yang, Y.

Zang, W. P.

Zervas, M. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

Zhao, Z. Y.

Appl. Phys. Lett. (3)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008).
[Crossref]

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett. 94(1), 011102 (2009).

J. Appl. Phys. (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64(4), 1632–1639 (1988).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (4)

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf. 111(5), 802–809 (2010).
[Crossref]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 770–788 (2008).
[Crossref]

G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 195–206 (2005).
[Crossref]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 207–217 (2005).
[Crossref]

Lab Chip (1)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12(18), 3436–3440 (2012).
[Crossref] [PubMed]

Light: Sci. Appl. (1)

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2(4), e64 (2013).
[Crossref]

Nano Lett. (1)

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Opt. Commun. (4)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002).
[Crossref]

H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005).
[Crossref]

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152(4–6), 376–384 (1998).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4–6), 252–261 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Rev. (1)

H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005).
[Crossref]

Physica (1)

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A(1-2), 209–242 (1986).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

SIAM J. Sci. Stat. Comput. (1)

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Other (3)

L. Donald, Lee, Electromagnetic principles of integrated optics (John Wiley, 1986).

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Particle located in the evanescent field produced by a waveguide.
Fig. 2
Fig. 2 Plots of the optical force components Q x c and Q z c versus the size parameter α when the incident waves are s-polarized in (a) and (c), and p-polarized in (b) and (d), respectively. The black curves represent the case that multiple scattering effect is ignored, i.e. neglecting the interaction between sphere and plane surface of the waveguide. The red lines show the exact results when the multiple scattering effect is considered. Parameters used here are n0 = 1.59, n1 = 1.33, n2 = 2.1, n3 = 1.5, h = 0.3 μm, λ=1.064 μm and d = a.
Fig. 3
Fig. 3 Plots of the optical force components Q x c and Q z c versus the size parameter α , when the incident waves are s-polarized in (a) and (c), and p-polarized in (b) and (d), respectively. The black curves represent the case that multiple scattering effect is ignored, i.e. neglecting the interaction between sphere and plane surface of the waveguide. The red lines show the exact results when the multiple scattering effect is considered. Parameter used here is n1 = 1 and the other parameters are same as that in Fig. 1.
Fig. 4
Fig. 4 Plots of the optical force components Q x c and Q z c versus the size parameter α when the incident waves are s-polarized in (a) and (c), and p-polarized in (b) and (d), respectively. The black curves represent the case that multiple scattering effect is ignored, i.e. neglecting the interaction between sphere and plane surface of the waveguide. The red lines show the exact results when the multiple scattering effect is considered. Parameter used here is n0 = 2.1 and the other parameters are the same as that in Fig. 1.
Fig. 5
Fig. 5 (a) Plots of the optical force components Q x c versus the normalized distance D with s-polarized incident wave. The black curve: ignoring multiple scattering effect and α=9.89 ; the red curve: considering multiple scattering effect and α=9.89 ; the blue curve: ignoring multiple scattering effect and α=9.62 ; the green curve: considering multiple scattering effect and α=9.62 . Inset of Fig. 5(a) shows amplification of the blue and green curves. (b) Plots of the optical force components Q z c versus the normalized distance D with s-polarized incident wave. The black curve: ignoring multiple scattering effect and α=9.86 ; the red curve: considering multiple scattering effect and α=9.86 ; the blue curve: ignoring multiple scattering effect and α=9.24 ; the green curve: considering multiple scattering effect and α=9.24 . Parameter used here is n0 = 2.1 and the other parameters are same as that in Fig. 1.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E int (r)=A· E sca (r)
E tot (r)= E eva (r)+ E int (r)= E eva (r)+A· E sca (r)
E sca (r)=T· E tot (r)
(I-T·A) E sca (r)=T· E eva (r)
E eva (r)= l 1 =1 m= l 1 l 1 [ a m l 1 0 M m l 1 (1) ( k 1 r)+ b m l 1 0 N m l 1 (1) ( k 1 r) ] H eva (r)= k iωμ l 1 =1 m= l 1 l 1 [ b m l 1 0 M m l 1 (1) ( k 1 r)+ a m l 1 0 N m l 1 (1) ( k 1 r) ]
E sca (r)= l=1 m=l l [ e ml M ml (3) ( k 1 r)+ f ml N ml (3) ( k 1 r) ] H sca (r)= k iωμ l=1 m=l l [ f ml M ml (3) ( k 1 r)+ e ml N ml (3) ( k 1 r) ]
E int (r)= l 1 =1 m= l 1 l 1 [ e m l 1 R M m l 1 (1) + f m l 1 R N m l 1 (1) ] H int (r)= k iωμ l 1 =1 m= l 1 l 1 [ f m l 1 R M m l 1 (1) + e m l 1 R N m l 1 (1) ]
[ e m l 1 R f m l 1 R ]=[ A ml l 1 ][ e ml f ml ]
[ e ml f ml ]=[ T ml l 1 ]( [ a m l 1 0 b m l 1 0 ]+[ e m l 1 R f m l 1 R ] )
( I[ T ml l 1 ][ A ml l 1 ] )[ e ml f ml ]=[ T ml l 1 ][ a m l 1 0 b m l 1 0 ]
E tot (r)= l 1 =1 m= l 1 l 1 [ a m l 1 M m l 1 (1) ( k 1 r)+ b m l 1 N m l 1 (1) ( k 1 r) ] H tot (r)= k iωμ l 1 =1 m= l 1 l 1 [ b m l 1 M m l 1 (1) ( k 1 r)+ a m l 1 N m l 1 (1) ( k 1 r) ]
[ a ml b ml ]=[ a m l 1 0 b m l 1 0 ]+[ A ml l 1 ][ e ml f ml ]
E y (x,z)= E 0 s e k x 2 k 1 2 (zd) e i k x x H z (x,z)= k x ωμ E y H x (x,z)= i k x 2 k 1 2 ωμ E y
H y (x,z)= E 0 p e k x 2 k 1 2 (zd) e i k x x E z (x,z)= k x ωε H y H x (x,z)= i k x 2 k 1 2 ωε H y
a m l 1 0 = i l 1 2 l 1 +1 l 1 ( l 1 +1) ( l 1 m)! ( l 1 +m)! τ l 1 m (ξ) E 0 s e id( k 1 2 k x 2 k 2 2 k x 2 ) b m l 1 0 = n 1 m i l 1 2 l 1 +1 l 1 ( l 1 +1) ( l 1 m)! ( l 1 +m)! π l 1 m (ξ) E 0 s e id( k 1 2 k x 2 k 2 2 k x 2 )
a m l 1 0 =m i l 1 2 l 1 +1 l 1 ( l 1 +1) ( l 1 m)! ( l 1 +m)! π l 1 m (ξ) E 0 p e id( k 1 2 k x 2 k 2 2 k x 2 ) b m l 1 0 = n 1 i l 1 2 l 1 +1 l 1 ( l 1 +1) ( l 1 m)! ( l 1 +m)! τ l 1 m (ξ) E 0 p e id( k 1 2 k x 2 k 2 2 k x 2 )
F = S n ^ · T dS
Q x c +i Q y c = π α 2 l,m 1 2l+1 (lm)! (l+m)! ×{ (lm)(l+m+1) Γ 1 (l,m)+ Γ 2 (l,m) i l(l+2) 2l+3 × [ (l+m+1)(l+m+2) Γ 2 (l,m)+ Γ 4 (l,m) ] } Q z c = 2π α 2 Re l,m 1 2l+1 (lm)! (l+m)! ×{ m Γ 5 (l,m)+i l(l+1) 2l+3 (l+m+1) Γ 6 (l,m) }
Q+i Q y c = F x +i F y ε 0 E 0 2 a 2 , Q z c = F z ε 0 E 0 2 a 2
Γ 1 (l,m)= e ml b m+1,l * +( a ml +2 e ml ) f m+1,l * Γ 2 (l,m)= e ml * b m1,l +( a ml * +2 e ml * ) f m1,l Γ 3 (l,m)= e ml a m+1,l+1 * + f ml b m+1,l+1 * +( a ml +2 f ml ) e m+1,l+1 * +( b ml +2 f ml ) f m+1,l+1 * Γ 4 (l,m)= e ml * a m1,l+1 + f ml * b m1,l+1 +( a ml * +2 e ml * ) e m1,l+1 +( b ml * +2 f ml * ) f m1,l+1 Γ 5 (l,m)= e ml b m,l * +( a ml +2 e ml ) f m,l * Γ 6 (l,m)= e ml a m,l+1 * + f ml b m,l+1 * +( a ml +2 e ml ) e m,l+1 * +( b ml +2 f ml ) f m,l+1 *

Metrics