Abstract

Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm2 and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal

Yuye Wang, Longhuang Tang, Degang Xu, Chao Yan, Yixin He, Jia Shi, Dexian Yan, Hongxiang Liu, Meitong Nie, Jiachen Feng, and Jianquan Yao
Opt. Express 25(8) 8926-8936 (2017)

Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range

Longhuang Tang, Degang Xu, Yuye Wang, Chao Yan, Yixin He, Jining Li, Kai Zhong, and Jianquan Yao
Opt. Express 27(16) 22808-22818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35(3), R1–R14 (2002).
    [Crossref]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  3. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [Crossref]
  4. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
    [Crossref]
  5. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]
  6. T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [Crossref] [PubMed]
  7. T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).
  8. D. H. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95(14), 141105 (2009).
    [Crossref]
  9. B. Sun, S. X. Li, J. S. Liu, E. B. Li, and J. Q. Yao, “Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity,” Opt. Lett. 36(10), 1845–1847 (2011).
    [Crossref] [PubMed]
  10. H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
    [Crossref]
  11. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
    [Crossref] [PubMed]
  12. W. T. Wang, X. Y. Zhang, Q. P. Wang, Z. H. Cong, X. H. Chen, Z. J. Liu, Z. G. Qin, P. Li, G. Q. Tang, N. Li, C. Wang, Y. F. Li, and W. Y. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal,” Opt. Lett. 39(4), 754–757 (2014).
    [Crossref] [PubMed]
  13. B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
    [Crossref]
  14. A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
    [Crossref]
  15. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
    [Crossref] [PubMed]
  16. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [Crossref] [PubMed]
  17. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
    [Crossref]
  18. Y. Wang, Z. Zhao, Z. Chen, and K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37(21), 4395–4397 (2012).
    [Crossref] [PubMed]
  19. W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
    [Crossref]
  20. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  21. F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
    [Crossref]

2014 (3)

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

W. T. Wang, X. Y. Zhang, Q. P. Wang, Z. H. Cong, X. H. Chen, Z. J. Liu, Z. G. Qin, P. Li, G. Q. Tang, N. Li, C. Wang, Y. F. Li, and W. Y. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal,” Opt. Lett. 39(4), 754–757 (2014).
[Crossref] [PubMed]

2013 (1)

A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

2009 (1)

D. H. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95(14), 141105 (2009).
[Crossref]

2006 (2)

2003 (2)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

2002 (2)

2001 (1)

1999 (1)

1997 (1)

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

1971 (1)

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

1965 (1)

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[Crossref]

Berman, P. R.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[Crossref]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Browne, P.

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Chen, X. H.

Chen, Z.

Cheng, W. Y.

Cong, Z. H.

Ding, Y. J.

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Dunn, M. H.

Edwards, T. J.

Fernelius, N.

Guo, R. X.

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

Hayashi, S.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

He, Y. B.

A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Hoo, J. S.

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

Ikari, T.

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

D. H. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95(14), 141105 (2009).
[Crossref]

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

Imai, K.

Inoue, H.

Ito, H.

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Johnson, B. C.

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

Kang, K.

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Lee, A.

A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Li, E. B.

Li, N.

Li, P.

Li, S. X.

Li, Y. F.

Liu, J. S.

Liu, Z. J.

Minamide, H.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Nakamura, K.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

Ogawa, Y.

Pask, H.

A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Puthoff, H. E.

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

Qin, Z. G.

Rae, C. F.

Sato, M.

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Shi, W.

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Shikata, J.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Spurr, M. B.

Sun, B.

Sussman, S. S.

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

Taira, T.

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

Tang, G. Q.

Taniuchi, T.

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Vodopyanov, K.

Walsh, D.

Wang, C.

Wang, Q. P.

Wang, W. T.

Wang, Y.

Watanabe, Y.

Wu, D. H.

D. H. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95(14), 141105 (2009).
[Crossref]

Yao, J. Q.

Zernike, F.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[Crossref]

Zhang, X. B.

Zhang, X. Y.

Zhao, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. H. Wu and T. Ikari, “Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam,” Appl. Phys. Lett. 95(14), 141105 (2009).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under nonlinear phase matching condition,” Appl. Phys. Lett. 71(6), 753–755 (1997).
[Crossref]

B. C. Johnson, H. E. Puthoff, J. S. Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Lee, Y. B. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

J. Eur. Opt. Soc. Rapid Pub. (1)

T. Ikari, R. X. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. Rapid Pub. 5, 10054 (2010).

J. Infrared Milli. Terahz. Waves (1)

H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, “Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature,” J. Infrared Milli. Terahz. Waves 35(1), 25–37 (2014).
[Crossref]

J. Phys. D (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35(3), R1–R14 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[Crossref]

Sci Rep (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci Rep 4, 5045 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Phase matching condition; (b) The three waves propagating in the crystal.
Fig. 2
Fig. 2 The schematic diagram of the experimental setup for the combination of a TPO and a spi-TPG.
Fig. 3
Fig. 3 The pentagonal MgO:LiNbO3 crystal used in the spi-TPG.
Fig. 4
Fig. 4 The output THz-wave energies for different pump beam energy densities and sizes.
Fig. 5
Fig. 5 The output energies of the amplified Stokes pulses for different pump beam energy densities and sizes.
Fig. 6
Fig. 6 Comparison of the THz-wave energies between the spi-TPG and the TPO for the same pump beam diameter of 3.0 mm.
Fig. 7
Fig. 7 Waveforms for the pump (a) and depleted pump (b) pulses. The pump energy is 302 mJ and the pump beam size is 7.0 mm.
Fig. 8
Fig. 8 Terahertz wave beam distributions in the vertical direction (a) and the horizontal direction (b) for different pump beam sizes in the case of 0.71 J/cm2 pump energy density.
Fig. 9
Fig. 9 The overlapping area of the pump and Stokes beams in the crystal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y 1 I T ( x 1 , y 1 ,z)=g [ I P ( x 1 , y 1 ,z) I S ( x 1 , y 1 ,z) I T ( x 1 , y 1 ,z)] 1/2 α I T ( x 1 , y 1 ,z),
α= ω T 2 k T c 2 Im( ε T ) ,
g= n T 2 ε 0 μ 0 ω T 2 k T c 2 [ d 33 + d Q Re( ε T ε )] [ 8 n P n S n T ( μ 0 / ε 0 ) 3/2 ] 1/2 ,

Metrics