Abstract

Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO2) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells

Albert Lin, Yan-Kai Zhong, Sze-Ming Fu, Chi Wei Tseng, and Sheng Lun Yan
Opt. Express 22(S3) A880-A894 (2014)

Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells

Braden Bills, Nathan Morris, Mukul Dubey, Qi Wang, and Qi Hua Fan
Opt. Express 23(3) A71-A82 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [Crossref]
  2. H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104–A118 (2012).
    [Crossref] [PubMed]
  3. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
    [Crossref] [PubMed]
  4. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(1), A39–A50 (2012).
    [Crossref] [PubMed]
  5. M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, and M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express 20(S6), A828–A835 (2012).
    [Crossref]
  6. K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.
  7. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
    [Crossref] [PubMed]
  8. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  9. Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011).
    [Crossref]
  10. M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A763–A771 (2011).
    [Crossref] [PubMed]
  11. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
    [Crossref] [PubMed]
  12. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36(4), 478–480 (2011).
    [Crossref] [PubMed]
  13. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [Crossref]
  14. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
    [Crossref] [PubMed]
  15. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
    [Crossref]
  16. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
    [Crossref] [PubMed]
  17. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [Crossref] [PubMed]
  18. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19(25), 25729–25740 (2011).
    [Crossref] [PubMed]
  19. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
    [Crossref] [PubMed]
  20. H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
    [Crossref]
  21. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
    [Crossref]
  22. N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
    [Crossref]
  23. B.-J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(S3Suppl 3), A326–A330 (2011).
    [Crossref] [PubMed]
  24. F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
    [Crossref]
  25. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  26. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
    [Crossref] [PubMed]
  27. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010).
    [Crossref] [PubMed]
  28. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  29. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  30. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [Crossref]
  31. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
    [Crossref]
  32. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
    [Crossref] [PubMed]
  33. J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
    [Crossref]
  34. J. M. Foley, A. M. Itsuno, T. Das, S. Velicu, and J. D. Phillips, “Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector,” Opt. Lett. 37(9), 1523–1525 (2012).
    [Crossref] [PubMed]
  35. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).
  36. B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
    [Crossref]
  37. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
    [Crossref]
  38. B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).
  39. O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
    [Crossref]
  40. J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
    [Crossref]
  41. O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
    [Crossref]
  42. A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).
  43. C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).
  44. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in 15th IEEE Photovoltaic Specialist Conference, (IEEE, 1981), 867–870.
  45. A. Kitait, Principles of Solar Cells, LEDs and Diodes: The role of the PN junction (John Wiley & Sons, 2011).
  46. Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).
  47. A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
    [Crossref]

2014 (1)

J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

2013 (3)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[Crossref]

2012 (10)

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

J. M. Foley, A. M. Itsuno, T. Das, S. Velicu, and J. D. Phillips, “Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector,” Opt. Lett. 37(9), 1523–1525 (2012).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104–A118 (2012).
[Crossref] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(1), A39–A50 (2012).
[Crossref] [PubMed]

M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, and M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express 20(S6), A828–A835 (2012).
[Crossref]

O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
[Crossref] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

2011 (19)

Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011).
[Crossref]

M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A763–A771 (2011).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36(4), 478–480 (2011).
[Crossref] [PubMed]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19(25), 25729–25740 (2011).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[Crossref] [PubMed]

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
[Crossref]

B.-J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(S3Suppl 3), A326–A330 (2011).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

2010 (5)

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

2009 (1)

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

2008 (1)

2007 (1)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
[Crossref]

1999 (1)

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

1998 (1)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

Abass, A.

Aberle, A. G.

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
[Crossref]

Alberi, K.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Alexander, D. T.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Alù, A.

Andreani, L. C.

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Ballif, C.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Barnett, A. M.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Basch, A.

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

Beck, F. J.

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

Berger, O.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
[Crossref]

Bienstman, P.

Boccard, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Bottler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Branz, H. M.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Broderick, L. Z.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

Bugnon, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Carius, R.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Catchpole, K. R.

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

Chang, J.-Y.

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, H.-L.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Chen, T.-G.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Cheng, H.-C.

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

Chew, W. C.

Chi, G.-C.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Chiou, S.-M.

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

Chiu, T. T.

Choy, W. C. H.

Chuang, T.-K.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Cotter, J. E.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

Couillard, J. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Cubero, O.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Das, T.

Deparis, O.

Despeisse, M.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

El Daif, O.

Escarré, J.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Fan, S.

Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Fang, C.-Y.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Foley, J.

J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Foley, J. M.

Fu, S.-M.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[Crossref]

Fu, Z.

Goetzberger, A.

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in 15th IEEE Photovoltaic Specialist Conference, (IEEE, 1981), 867–870.

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Grote, R. R.

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Hall, R. B.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Hänni, S.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Haug, F. J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Haug, F.-J.

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Herzig, H. P.

Hong, C.-Y.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Hsing, J. Y.

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Huang, C.-F.

Huang, N.

Hung, K.-H.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Inns, D.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
[Crossref]

Isabella, O.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Itsuno, A. M.

Johnson, S. G.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

Kiang, Y.-W.

Kim, B.-J.

Kim, J.

Kimerling, L. C.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Krc, J.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Kunz, O.

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

Kuo, M. Y.

Kuo, W. T.

Kuo, Y.

Lagos, N.

N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
[Crossref]

Lanz, T.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

Lay, T. S.

Le, K. Q.

Lee, B. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Lee, Y.-C.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
[Crossref] [PubMed]

Li, C. N.

Li, H.-H.

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Liao, C.-Y.

Lidorikis, E.

N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
[Crossref]

Lin, A.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[Crossref]

Lin, C.

Lin, F.

Lin, H.-Y.

Lipovšek, B.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Liscidini, M.

Liu, H.-W.

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Liu, Y.-L.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Maes, B.

Mann, S. A.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Mauk, M. G.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Meillaud, F.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Michel, J.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

Mokkapati, S.

Moulin, E.

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Naqavi, A.

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

Osgood, R. M.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

Paeder, V.

Paetzold, U. W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Parascandolo, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

Phillips, J.

J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Phillips, J. D.

Pieters, B. E.

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Povinelli, M. L.

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Ruhstaller, B.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

Scharf, T.

Schuller, J. A.

Sha, W. E. I.

Sheng, X.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

Shih, M. H.

Sigalas, M. M.

N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Söderström, T.

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

Stradins, P.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Topic, M.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Varlamov, S.

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

Velicu, S.

Wächter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Wan, D.-H.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Wu, M.-L.

Wu, Y.-R.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Yang, C. C.

Yang, M.

Yang, P.-Y.

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

Yang, T.-T.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Young, D. L.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

Young, S.

J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Yu, C.-C.

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Yu, P.

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Yu, Z.

Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Zanotto, S.

Zeman, M.

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

Zhong, Y.-K.

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Zhu, X.

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes,” Adv. Mater. 23, 1412–1421 (2013).

Appl. Phys. Lett. (7)

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T.-K. Chuang, J. G. Couillard, and H. M. Branz, “Light trapping by a dielectric nanoparticle back reflector in film silicon solar cells,” Appl. Phys. Lett. 99, 064101 (2011).

A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100, 243903 (2012).

N. Lagos, M. M. Sigalas, and E. Lidorikis, “Theory of plasmonic near-field enhanced absorption in solar cells,” Appl. Phys. Lett. 99(6), 063304 (2011).
[Crossref]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Elecron. Dev. Lett. (1)

H.-H. Li, P.-Y. Yang, S.-M. Chiou, H.-W. Liu, and H.-C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” Elecron. Dev. Lett. 32(7), 928–930 (2011).
[Crossref]

J. Appl. Phys. (6)

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110(3), 033111 (2011).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

A. Lin, Y.-K. Zhong, and S.-M. Fu, “The effect of mode excitations on the absorption enhancement for silicon thin film solar cells,” J. Appl. Phys. 114(23), 233104 (2013).
[Crossref]

B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reflectors for thin-film silicon solar cells,” J. Appl. Phys. 108(10), 103115 (2010).
[Crossref]

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 618–624 (1998).
[Crossref]

Nano Lett. (1)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Opt. Express (15)

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19(25), 25729–25740 (2011).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[Crossref] [PubMed]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A763–A771 (2011).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4Suppl 4), A841–A850 (2011).
[Crossref] [PubMed]

H.-Y. Lin, Y. Kuo, C.-Y. Liao, C. C. Yang, and Y.-W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104–A118 (2012).
[Crossref] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(1), A39–A50 (2012).
[Crossref] [PubMed]

M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, and M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express 20(S6), A828–A835 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
[Crossref] [PubMed]

B.-J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(S3Suppl 3), A326–A330 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

J. Foley, S. Young, and J. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (3)

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21, 821–826 (2013).

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light Trapping in Silicon-FilmTM Solar Cells with Rear Pigmented Dielectric Reflectors,” Prog. Photovolt. Res. Appl. 7(4), 261–274 (1999).
[Crossref]

O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, “5% efficient evaporated solidphase crystallised Polycrystalline silicon thin-film solar cells,” Prog. Photovolt. Res. Appl. 17(8), 567–573 (2009).
[Crossref]

Sol. Energ. Mat. Sol. C. (1)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energ. Mat. Sol. C. 91(13), 1215–1221 (2007).
[Crossref]

Other (4)

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in 15th IEEE Photovoltaic Specialist Conference, (IEEE, 1981), 867–870.

A. Kitait, Principles of Solar Cells, LEDs and Diodes: The role of the PN junction (John Wiley & Sons, 2011).

Rsoft, Rsoft CAD User Manual, 8.2 ed. (Rsoft Design Group, 2010).

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 003322 - 003324.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the simulation structure for silver metallic reflectors for solar cells. (a) different potential configurations of metallic reflectors for solar cells [47]. (b) The best-configured metallic mirror configuration for solar cell application, which is employed in this study.
Fig. 2
Fig. 2 Illustration of the simulation structure for white paint diffuse medium reflectors.
Fig. 3
Fig. 3 The theoretical diffraction property for a silver metallic reflector. (Left)The total reflectance(R), absorbance(Abs), and transmittance(T). (Right) The diffused scattering efficiency (D.S.E.), the 0th order specular reflected power (0, 0), and the strongest diffused power which corresponds to the first-order diffraction ( ± 1, ± 1).
Fig. 4
Fig. 4 The theoretical diffraction property for a white paint diffuse medium reflector. (Left)The total reflectance(R), absorbance(Abs), and transmittance(T). (Right) The diffused scattering efficiency (D.S.E.), the 0th order specular reflected power (0, 0), and the strongest diffused power which corresponds to the first-order diffraction ( ± 1, ± 1).
Fig. 5
Fig. 5 The process steps for fabricating amorphous silicon thin-film solar cell using very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD).
Fig. 6
Fig. 6 The current-voltage characteristics (J-V) for the solar cells with various reflectors including white paint diffuse medium reflectors, silver, aluminum, titanium, and nickel.
Fig. 7
Fig. 7 The Ultraviolet–visible spectroscopy (UV-VIS) spectrum for the reflectance of various reflectors
Fig. 8
Fig. 8 The specular and diffused component of the reflected power for different reflectors. The structure for this specular and diffused power measurement is the back reflector structure in real solar cells in section 4. The diffused scattering efficiency (D.S.E.) is defined as the diffused power divided by total reflected power and it characterizes the reflectors’ large-angle diffraction capability.

Tables (1)

Tables Icon

Table 1 Comparison of relative enhancement in conversion efficiency(η) for different reflectors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 E(x,z)+ ω 2 μεE(x,z) = 2 [ E inc exp(j k inc z)+ i b i (z)exp(j k x,i x) ] + ω 2 με[ E inc exp(j k inc z)+ i b i (z)exp(j k x,i x) ]
E ( x , z ) = E i n c e x p ( j k i n c z ) + i b i ( z ) e x p ( j k x , i x )
D.S.E.(λ)= i0 | b i (z) | 2 alli | b i (z) | 2 = P diffuse (λ) P total (λ)

Metrics