Abstract

A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 µm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses

Isamu Miyamoto, Kristian Cvecek, Yasuhiro Okamoto, Michael Schmidt, and Henry Helvajian
Opt. Express 19(23) 22961-22973 (2011)

Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt
Appl. Opt. 50(13) 1941-1944 (2011)

Direct welding of glass and metal by 1  kHz femtosecond laser pulses

Guodong Zhang and Guanghua Cheng
Appl. Opt. 54(30) 8957-8961 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Younger, “Hermetic glass sealing by electrostatic bonding,” J. Non-Cryst. Solids 38–39, 909–914 (1980).
    [Crossref]
  2. G. Wallis and D. Pomerantz, “Field assisted glass–metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
    [Crossref]
  3. C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A 97–98, 398–404 (2002).
    [Crossref]
  4. J. S. Park and A. A. Tseng, “Transmission laser bonding of glass with silicon wafer,” Proc. 2004 JUSFA Japan US Symposium on Flexible Automation, Denver (2004).
  5. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  6. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
    [Crossref]
  7. A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng. 5(2), 98–102 (1995).
    [Crossref]
  8. J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
    [Crossref]
  9. A. W. Y. Tan and F. E. H. Tay, “Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser,” Sens. Actuators A 120(2), 550–561 (2005).
    [Crossref]
  10. M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
    [Crossref]
  11. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
    [Crossref] [PubMed]
  12. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
    [Crossref]
  13. M. Watanabe and K. Satoh, “Welding mechanics and its applications,” 270–274 (Tokyo: Asakura, 1965)
  14. T. Terasaki, “Welding distortion and residual stress,” J. Jpn. Welding Soc. 78(2), 139–146 (2009).
    [Crossref]
  15. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
    [Crossref]
  16. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
    [Crossref]
  17. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [Crossref] [PubMed]
  18. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
    [Crossref] [PubMed]
  19. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
    [Crossref]
  20. I. Miyamoto, “Laser welding of glass,” in Handbook of Laser Welding Technologies, S. Katayama, ed. (Woodhead Publishing, 2013), pp. 301–331.
  21. I. Miyamoto and G. A. Knorovsky, “Laser microwelding,” in Microjoining and Nanojoining, Y. Zhou, ed. (Woodhead Publishing, 2008), pp. 345–417.
  22. G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152µ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
    [Crossref]
  23. J. Geist, A. Migdall, and H. P. Baltes, “Analytic representation of the silicon absorption coefficient in the indirect transition region,” Appl. Opt. 27(18), 3777–3779 (1988).
    [Crossref] [PubMed]
  24. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  25. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  26. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19(23), 22961–22973 (2011).
    [Crossref] [PubMed]
  27. Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
    [Crossref]

2014 (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

2013 (2)

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

2011 (3)

2009 (1)

T. Terasaki, “Welding distortion and residual stress,” J. Jpn. Welding Soc. 78(2), 139–146 (2009).
[Crossref]

2008 (1)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

2007 (2)

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

2006 (1)

2005 (1)

A. W. Y. Tan and F. E. H. Tay, “Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser,” Sens. Actuators A 120(2), 550–561 (2005).
[Crossref]

2003 (1)

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

2002 (1)

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A 97–98, 398–404 (2002).
[Crossref]

2001 (2)

M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
[Crossref]

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1995 (1)

A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng. 5(2), 98–102 (1995).
[Crossref]

1988 (1)

1982 (1)

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152µ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

1980 (1)

P. R. Younger, “Hermetic glass sealing by electrostatic bonding,” J. Non-Cryst. Solids 38–39, 909–914 (1980).
[Crossref]

1969 (1)

G. Wallis and D. Pomerantz, “Field assisted glass–metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

Baltes, H. P.

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Cozma, A.

A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng. 5(2), 98–102 (1995).
[Crossref]

Cvecek, K.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Frick, T.

Geist, J.

Gillner, A.

M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
[Crossref]

Gottmann, J.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
[Crossref]

Greco, V.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Helvajian, H.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Itoh, K.

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152µ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Lee, L. C.

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

Lin, L.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A 97–98, 398–404 (2002).
[Crossref]

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152µ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Luo, C.

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A 97–98, 398–404 (2002).
[Crossref]

Marchesini, F.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Migdall, A.

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Miyamoto, I.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19(23), 22961–22973 (2011).
[Crossref] [PubMed]

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[Crossref] [PubMed]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
[Crossref]

Molesini, G.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Nai, M. L.

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Okada, A.

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19(23), 22961–22973 (2011).
[Crossref] [PubMed]

Park, J. S.

J. S. Park and A. A. Tseng, “Transmission laser bonding of glass with silicon wafer,” Proc. 2004 JUSFA Japan US Symposium on Flexible Automation, Denver (2004).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pomerantz, D.

G. Wallis and D. Pomerantz, “Field assisted glass–metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

Poprawe, R.

M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
[Crossref]

Puers, B.

A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng. 5(2), 98–102 (1995).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Schmidt, M.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Strauss, J.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Takahashi, K.

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

Tamaki, T.

Tan, A. W. Y.

A. W. Y. Tan and F. E. H. Tay, “Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser,” Sens. Actuators A 120(2), 550–561 (2005).
[Crossref]

Tay, F. E. H.

A. W. Y. Tan and F. E. H. Tay, “Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser,” Sens. Actuators A 120(2), 550–561 (2005).
[Crossref]

Terasaki, T.

T. Terasaki, “Welding distortion and residual stress,” J. Jpn. Welding Soc. 78(2), 139–146 (2009).
[Crossref]

Tseng, A. A.

J. S. Park and A. A. Tseng, “Transmission laser bonding of glass with silicon wafer,” Proc. 2004 JUSFA Japan US Symposium on Flexible Automation, Denver (2004).

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wallis, G.

G. Wallis and D. Pomerantz, “Field assisted glass–metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

Watanabe, W.

Wei, J.

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Wild, M. J.

M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
[Crossref]

Wolf, M.

Wong, C. K.

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Xie, H.

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Younger, P. R.

P. R. Younger, “Hermetic glass sealing by electrostatic bonding,” J. Non-Cryst. Solids 38–39, 909–914 (1980).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152µ at elevated temperatures,” Appl. Phys. Lett. 41(7), 594–596 (1982).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

J. Appl. Phys. (1)

G. Wallis and D. Pomerantz, “Field assisted glass–metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

J. Jpn. Welding Soc. (1)

T. Terasaki, “Welding distortion and residual stress,” J. Jpn. Welding Soc. 78(2), 139–146 (2009).
[Crossref]

J. Laser Micro/Nanoeng. (3)

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2(1), 7–14 (2007).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of molten zone in micro-welding of glass by picosecond pulsed laser,” J. Laser Micro/Nanoeng. 8(1), 65–69 (2013).
[Crossref]

J. Micromech. Microeng. (2)

A. Cozma and B. Puers, “Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng. 5(2), 98–102 (1995).
[Crossref]

J. Wei, H. Xie, M. L. Nai, C. K. Wong, and L. C. Lee, “Low temperature wafer anodic bonding,” J. Micromech. Microeng. 13(2), 217–222 (2003).
[Crossref]

J. Non-Cryst. Solids (1)

P. R. Younger, “Hermetic glass sealing by electrostatic bonding,” J. Non-Cryst. Solids 38–39, 909–914 (1980).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Opt. Express (4)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sens. Actuators A (3)

A. W. Y. Tan and F. E. H. Tay, “Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser,” Sens. Actuators A 120(2), 550–561 (2005).
[Crossref]

M. J. Wild, A. Gillner, and R. Poprawe, “Locally selective bonding of silicon and glass with laser,” Sens. Actuators A 93(1), 63–69 (2001).
[Crossref]

C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A 97–98, 398–404 (2002).
[Crossref]

Other (4)

J. S. Park and A. A. Tseng, “Transmission laser bonding of glass with silicon wafer,” Proc. 2004 JUSFA Japan US Symposium on Flexible Automation, Denver (2004).

M. Watanabe and K. Satoh, “Welding mechanics and its applications,” 270–274 (Tokyo: Asakura, 1965)

I. Miyamoto, “Laser welding of glass,” in Handbook of Laser Welding Technologies, S. Katayama, ed. (Woodhead Publishing, 2013), pp. 301–331.

I. Miyamoto and G. A. Knorovsky, “Laser microwelding,” in Microjoining and Nanojoining, Y. Zhou, ed. (Woodhead Publishing, 2008), pp. 345–417.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Appearance of samples irradiated with ns-laser pulses (τp = 7 ns, λ = 532 nm, Q0 = 7.5 µJ, d = 13 µm). (a) Si without glass substrate. (b) Si/Borofloat 33.
Fig. 2
Fig. 2 Cross-section of laser-irradiated Si/SW-Y near the laser axis (A-A) and surrounding area of the laser spots (B-B). Cracks are produced in the molten Si layer, since molten region contains free surface. (τp = 25 ns, λ = 532 nm, Q0 = 63 µJ, laser spot diameter d ≈34 µm)
Fig. 3
Fig. 3 Cross-sections of laser-irradiated optical contact sample at Q0 = 4 µJ, which provides the fluence nearly the same as Fig. 1 (f = 0.25 MHz, v = 5 m/s). Vacancy and micro-cracks are found.
Fig. 4
Fig. 4 Laser-irradiated samples at different translation speeds in (a) Si sample without glass substrate and (b) Si/glass (Borofloat 33) sample with optical contact. M, G and E show separated melt circle without glass substrate, molten region with optical contact sample, and the evaporated region shown in Fig. 3 (f = 0.25MHz, Q0 = 4 µJ).
Fig. 5
Fig. 5 Width of molten region of silicon with (G: Doc) and without (M: DSi) glass substrate plotted vs. translation speed v. N is the number of pulse in the laser beam spot given by fd/v (f = 0.25MHz, Q0 = 4 µJ).
Fig. 6
Fig. 6 Two-dimensional melt Si flow in the magnified picture of Fig. 4(b). E, M and G represent evaporation region and melt circle without and with glass substrate, respectively. Arrows show the melt flow (a) v = 5 m/s and (b) v = 3 m/s. (Q0 = 4µJ, f = 0.25MHz)
Fig. 7
Fig. 7 Cross-section of welded Si/D263 by 20-ps laser pulses at f = 2 MHz, Q0 = 2 µJ and v = 2 m/s. Element analysis of (a) O and (b) Si, (c) backscattered electron image, and (d) schematic illustration showing how the recoil pressure of evaporation provides curved structure containing a pit and wings.
Fig. 8
Fig. 8 Cross-section (backscattered electron image) and element analysis of O and Si in laser welded Si/D263 by 20-ps laser pulses at different values of Q0 at f = 2 MHz and v = 2 m/s. Note that cracks are produced not by welding but by sample preparation accidentally.
Fig. 9
Fig. 9 Cross-section (backscattered electron image) and element analysis of O and Si in laser welded Si/D263 by 20-ps laser pulses at different values of v at f = 2 MHz, and Q0 = 2 µJ.
Fig. 10
Fig. 10 (a) Sample used for shear test having the optical contact face with a width of 1 mm prepared by HF-etching and masking. (b) Appearance of laser-weld beads at f = 1 MHz, Q0 = 2 µJ and v = 2 m/s where five parallel beads are made in the optical contact area.
Fig. 11
Fig. 11 Shear strength of laser-welded Si/SW-Y sample at Q0 = 3 µJ. (a) Effect of pulse repetition rate at v = 2 m/s. (b) Effect of translation speed v at f = 1 MHz.
Fig. 12
Fig. 12 Shear strength of laser-welded Si/SW-Y sample plotted vs. translation speed v at f = 0.25 MHz (Q0 = 3 µJ).
Fig. 13
Fig. 13 Shear strength of laser-welded Si/Borofloat 33 sample plotted vs. N at f = 0.25 MHz and f = 2 MHz (Q0 = 3 µJ).
Fig. 14
Fig. 14 Laser welded grid pattern in Si/Pyrex at f = 2 MHz and Q0 = 1 µJ. Weld line of width 180 µm consists of 20 weld lines. (a) Appearance of sample singulated by a standard dicer. (b) Ultrasonic examination. (c) Magnified picture of diced sample.
Fig. 15
Fig. 15 (a) Typical cross-section at N = 20 with line separation of 14 µm (f = 2 MHz, Q0 = 2 µJ, v = 1 m/s). (b) Throughput of two-dimensional welding of Si/glass using ps-laser pulses at N = 5 and N = 10 where A and B correspond to the condition shown in Fig. 11(b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ w = F rup F oc S w
Φ=DΔf=β f d 2 N
W ab =f Q 0

Metrics