Abstract

Using the optically pumped variable stripe length technique we demonstrate that, through calibration of measured spontaneous emission spectra, it is possible to determine the total radiative recombination rate for a gain material as a function of the intrinsic quasi-Fermi level separation. Specifically we compare the room temperature optical characteristics of a self-assembled InP/GaInP quantum dot material measured using both optical and electrical pumping. The comparison reveals good agreement between gain and emission spectra measured with the two techniques, for the same inversion, from which we conclude that the carrier distributions in each case are equivalent. The results demonstrate that the optically pumped experiment can provide a good measure of the overall radiative efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires

Luis Javier Martínez, Benito Alén, Ivan Prieto, David Fuster, Luisa González, Yolanda González, María Luisa Dotor, and Pablo Aitor Postigo
Opt. Express 17(17) 14993-15000 (2009)

Spectroscopy of optical gain in low threshold colloidal quantum dot laser media: dominance of single-exciton states at room temperature

Kwangdong Roh, Joonhee Lee, Cuong Dang, and Arto Nurmikko
Opt. Mater. Express 6(12) 3776-3786 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
    [Crossref] [PubMed]
  2. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
    [Crossref] [PubMed]
  3. B. Guilhabert, C. Foucher, A.-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H. D. Sun, H. V. Demir, M. D. Dawson, and N. Laurand, “Nanosecond colloidal quantum dot lasers for sensing,” Opt. Express 22(6), 7308–7319 (2014).
    [Crossref] [PubMed]
  4. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref] [PubMed]
  5. C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “Highly-photostable and mechanically flexible all-organic semiconductor lasers,” Opt. Mater. Express 3(5), 584–597 (2013).
    [Crossref]
  6. Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
    [Crossref] [PubMed]
  7. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
    [Crossref]
  8. P. S. Cross and W. G. Oldham, “Theory of optical gain measurements,” IEEE J. Quantum Electron. 11(5), 190–197 (1975).
    [Crossref]
  9. A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
    [Crossref]
  10. P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
    [Crossref]
  11. P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
    [Crossref]
  12. H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
    [Crossref]
  13. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
    [Crossref]
  14. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, 1995).
  15. J. M. Hvam, “Direct recording of optical-gain spectra from ZnO,” J. Appl. Phys. 49(6), 3124–3126 (1978).
    [Crossref]
  16. M. G. A. Bernard and G. Duraffourg, “Laser conditions in semiconductors,” Phys. Status Solidi B 1(7), 699–703 (1961).
    [Crossref]
  17. M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
    [Crossref]

2014 (2)

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

B. Guilhabert, C. Foucher, A.-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H. D. Sun, H. V. Demir, M. D. Dawson, and N. Laurand, “Nanosecond colloidal quantum dot lasers for sensing,” Opt. Express 22(6), 7308–7319 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

2011 (1)

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

2007 (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

2004 (1)

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

2003 (2)

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

1997 (1)

A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
[Crossref]

1978 (1)

J. M. Hvam, “Direct recording of optical-gain spectra from ZnO,” J. Appl. Phys. 49(6), 3124–3126 (1978).
[Crossref]

1975 (1)

P. S. Cross and W. G. Oldham, “Theory of optical gain measurements,” IEEE J. Quantum Electron. 11(5), 190–197 (1975).
[Crossref]

1971 (1)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

1961 (1)

M. G. A. Bernard and G. Duraffourg, “Laser conditions in semiconductors,” Phys. Status Solidi B 1(7), 699–703 (1961).
[Crossref]

Bawendi, M. G.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Bernard, M. G. A.

M. G. A. Bernard and G. Duraffourg, “Laser conditions in semiconductors,” Phys. Status Solidi B 1(7), 699–703 (1961).
[Crossref]

Bettotti, P.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Blood, P.

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

Breen, C.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Caruge, J.-M.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Cazzanelli, M.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Chan, Y.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Coe-Sullivan, S.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Cross, P. S.

P. S. Cross and W. G. Oldham, “Theory of optical gain measurements,” IEEE J. Quantum Electron. 11(5), 190–197 (1975).
[Crossref]

Dal Negro, L.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Dang, C.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Dawson, M. D.

Demir, H. V.

Duraffourg, G.

M. G. A. Bernard and G. Duraffourg, “Laser conditions in semiconductors,” Phys. Status Solidi B 1(7), 699–703 (1961).
[Crossref]

Erbert, G.

A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
[Crossref]

Foucher, C.

Gao, Y.

Guilhabert, B.

Haughey, A.-M.

Herrnsdorf, J.

Hutchings, M.

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

Hvam, J. M.

J. M. Hvam, “Direct recording of optical-gain spectra from ZnO,” J. Appl. Phys. 49(6), 3124–3126 (1978).
[Crossref]

Kanibolotsky, A. L.

Laurand, N.

Lee, J.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Lewis, G. M.

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Lim, H.

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

Lutti, J.

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Mutlugun, E.

Nair, G. P.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Nocera, D. G.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Nurmikko, A.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

O’Driscoll, I.

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

Oldham, W. G.

P. S. Cross and W. G. Oldham, “Theory of optical gain measurements,” IEEE J. Quantum Electron. 11(5), 190–197 (1975).
[Crossref]

Osbourne, S.

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

Oster, A.

A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
[Crossref]

Pacifici, D.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Pavesi, L.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Ryu, H.

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

Samuel, I. D. W.

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Shim, J.

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

Skabara, P. J.

Smowton, P. M.

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

Snee, P. T.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Sobiesierski, A.

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

Steckel, J. S.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Summers, H.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Sun, H. D.

Thomson, J.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Tsiminis, G.

Turnbull, G. A.

Wang, Y.

Wenzel, H.

A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
[Crossref]

Yen, B. K.

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

Yoo, K.

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

Appl. Phys. Lett. (3)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

P. M. Smowton, G. M. Lewis, A. Sobiesierski, P. Blood, J. Lutti, and S. Osbourne, “Non-uniform carrier distributions in multiple-quantum-well lasers,” Appl. Phys. Lett. 83(3), 419–421 (2003).
[Crossref]

M. Hutchings, I. O’Driscoll, P. M. Smowton, and P. Blood, “Fermi-Dirac and random carrier distributions in quantum dot lasers,” Appl. Phys. Lett. 104(3), 031103 (2014).
[Crossref]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

Electron. Lett. (1)

A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett. 33(10), 864–866 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

P. S. Cross and W. G. Oldham, “Theory of optical gain measurements,” IEEE J. Quantum Electron. 11(5), 190–197 (1975).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Chan, P. T. Snee, J.-M. Caruge, B. K. Yen, G. P. Nair, D. G. Nocera, and M. G. Bawendi, “A solvent-stable nanocrystal-silica composite laser,” J. Am. Chem. Soc. 128(10), 3146–3147 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. M. Hvam, “Direct recording of optical-gain spectra from ZnO,” J. Appl. Phys. 49(6), 3124–3126 (1978).
[Crossref]

J. Korean Phys. Soc. (1)

H. Lim, J. Shim, K. Yoo, and H. Ryu, “Investigation of the carrier distribution characteristics in InGaN multiple quantun wells by using dual-wavelength light emitting diodes,” J. Korean Phys. Soc. 58(2), 311–315 (2011).
[Crossref]

Nat. Nanotechnol. (1)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Status Solidi B (1)

M. G. A. Bernard and G. Duraffourg, “Laser conditions in semiconductors,” Phys. Status Solidi B 1(7), 699–703 (1961).
[Crossref]

Other (1)

L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the segmented contact device used to measure the ASE resulting from optical or electrical injection.
Fig. 2
Fig. 2 (a) ASE intensity spectra measured as a function of stripe length for the maximum available optical pump power. (b) ASE intensity versus stripe length for the energy; corresponding to the stimulated emission peak (black triangles) fitted with Eq. (1) (black line), and where the net modal gain equals zero (red squares) fitted with a straight line (red line).
Fig. 3
Fig. 3 (a) TE and TM net modal gain spectra measured with the OPVSL (black triangles) and the EPVSL (red squares) for the same inversion. The solid vertical black line indicates the transparency energy, which is the same for optical and electrical pumping. (b) TE net modal absorption spectra measured with the OPVSL method at various pump powers (continuous lines) and with the EPVSL method (dashed red line).
Fig. 4
Fig. 4 (a) Gain to spontaneous emission ratio spectra measured for the TE polarization at various optical pump powers each fitted using Eq. (3) with Pf in the form of Eq. (5) (continuous lines). (b) Calibrated spontaneous emission spectra for the TE and TM polarizations measured using the OPVSL method (black triangles) and the EPVSL method (red squares).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I A S E ( l ) = C I s p o n e ( G α i ) l 1 G α i
( A + α i ) = 1 L ln [ I ( l 1 ) I ( l 2 ) ]
G ( ω ) I s p o n m e a s ( ω ) = 1 C { 3 3 c 2 π 2 n 2 ( ω ) 2 ( 1 w mod ) } P f
P f ( ω ) = f 1 f 2 f 1 ( 1 f 2 )
P f ( ω ) = 1 exp ( ω Δ E F k T ) .
η 0 = J s p o n J ;
G e h = P E p h . η a b s

Metrics