Abstract

We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm3+ fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm3+ fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm3+-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power fiber lasers based on tandem pumping

Pu Zhou, Hu Xiao, Jinyong Leng, Jiangmin Xu, Zilun Chen, Hanwei Zhang, and Zejin Liu
J. Opt. Soc. Am. B 34(3) A29-A36 (2017)

Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region

Fang Liu, Pei Liu, Xi Feng, Changle Wang, Zhijun Yan, and Zhaowei Zhang
Opt. Express 27(6) 8283-8290 (2019)

High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations

Daniel Creeden, Benjamin R. Johnson, Glen A. Rines, and Scott D. Setzler
Opt. Express 22(23) 29067-29080 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
    [Crossref] [PubMed]
  2. Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, “High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity,” Opt. Express 20(16), 17539–17544 (2012).
    [Crossref] [PubMed]
  3. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
    [Crossref] [PubMed]
  4. R. A. Sims, P. Kadwani, A. S. Shah, and M. Richardson, “1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
    [Crossref] [PubMed]
  5. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
    [Crossref] [PubMed]
  6. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann, “152 W average power Tm-doped fiber CPA system,” Opt. Lett. 39(16), 4671–4674 (2014).
    [Crossref] [PubMed]
  7. X. Wang, P. Zhou, H. Zhang, X. Wang, H. Xiao, and Z. Liu, “100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers,” Opt. Lett. 39(15), 4329–4332 (2014).
    [Crossref] [PubMed]
  8. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” In Fiber Lasers III: Technology, Systems, and Applications, Proc. of SPIE 7580, (SPIE, 2010), paper 7580–112.
  9. M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Sergeev, and V. Gapontsev, “415W Single-Mode CW Thulium Fiber Laser in all-fiber format,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CP2_3.
  10. Y. Tang, F. Li, and J. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
    [Crossref]
  11. D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chicklis, “Resonantly pumped Tm-doped fiber laser with >90% slope efficiency,” Opt. Lett. 39(3), 470–473 (2014).
    [Crossref] [PubMed]
  12. D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations,” Opt. Express 22(23), 29067–29080 (2014).
    [Crossref] [PubMed]
  13. C. Huang, Y. Tang, H. Li, Y. Wang, J. Xu, and C. Du, “A versatile model for temperature-dependent effects in Tm-doped silica fiber lasers,” J. Lightwave Technol. 32(3), 421–428 (2014).
    [Crossref]
  14. J. Yang, Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China, and Y. Wang, G. Zhang, Y. Tang, C. Huang, and J. Xu. are preparing a manuscript to be called “Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers.”
  15. D. P. Hand and P. S. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett. 13(9), 767–769 (1988).
    [Crossref] [PubMed]
  16. Y. Jeong, S. Baek, P. Dupriez, J.-N. Maran, J. K. Sahu, J. Nilsson, and B. Lee, “Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection,” Opt. Express 16(24), 19865–19871 (2008).
    [Crossref] [PubMed]

2014 (5)

2013 (3)

2012 (1)

2011 (1)

Y. Tang, F. Li, and J. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[Crossref]

2010 (1)

2008 (1)

1988 (1)

Alam, S. U.

Baek, S.

Becker, M.

Chicklis, E. P.

Creeden, D.

Du, C.

Dupriez, P.

Fuchs, F.

Gaida, C.

Gebhardt, M.

Hand, D. P.

Heidt, A. M.

Huang, C.

Ibsen, M.

Jansen, F.

Jauregui, C.

Jeong, Y.

Johnson, B. R.

Kadwani, P.

Kelly, B.

Kracht, D.

Lee, B.

Li, F.

Y. Tang, F. Li, and J. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[Crossref]

Li, H.

Li, Z.

Limpert, J.

Liu, Z.

Maran, J.-N.

Nilsson, J.

Phelan, R.

Richardson, D. J.

Richardson, M.

Rines, G. A.

Rothhardt, M.

Russell, P. S. J.

Sahu, J.

Sahu, J. K.

Setzler, S. D.

Shah, A. S.

Shardlow, P. C.

Sims, R. A.

Stutzki, F.

Tang, Y.

Tünnermann, A.

Wandt, D.

Wang, S.

Wang, X.

Wang, Y.

Wienke, A.

Xiao, H.

Xu, J.

Xu, L.

Yang, Y.

Zeitner, U.

Zhang, H.

Zhou, P.

IEEE Photon. Technol. Lett. (1)

Y. Tang, F. Li, and J. Xu, “High peak-power gain-switched Tm-doped fiber laser,” IEEE Photon. Technol. Lett. 23(13), 893–895 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (7)

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
[Crossref] [PubMed]

R. A. Sims, P. Kadwani, A. S. Shah, and M. Richardson, “1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
[Crossref] [PubMed]

F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann, “152 W average power Tm-doped fiber CPA system,” Opt. Lett. 39(16), 4671–4674 (2014).
[Crossref] [PubMed]

X. Wang, P. Zhou, H. Zhang, X. Wang, H. Xiao, and Z. Liu, “100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers,” Opt. Lett. 39(15), 4329–4332 (2014).
[Crossref] [PubMed]

D. P. Hand and P. S. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett. 13(9), 767–769 (1988).
[Crossref] [PubMed]

D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chicklis, “Resonantly pumped Tm-doped fiber laser with >90% slope efficiency,” Opt. Lett. 39(3), 470–473 (2014).
[Crossref] [PubMed]

Other (3)

J. Yang, Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China, and Y. Wang, G. Zhang, Y. Tang, C. Huang, and J. Xu. are preparing a manuscript to be called “Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers.”

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” In Fiber Lasers III: Technology, Systems, and Applications, Proc. of SPIE 7580, (SPIE, 2010), paper 7580–112.

M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Sergeev, and V. Gapontsev, “415W Single-Mode CW Thulium Fiber Laser in all-fiber format,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CP2_3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Absorption and emission cross section of the Tm-doped fiber and schematic diagram of the cascaded tandem pumping technique. The 1st stage tandem pumping: ~1900 nm → ~1940 nm; the 2nd stage tandem pumping: ~1940 nm → ~2020 nm. Inset shows absorption cross section of the Tm-doped fiber from 1900 nm to 1940 nm.
Fig. 2
Fig. 2 Experimental setup for the second-stage tandem pumping Tm fiber laser with the co-propagation (upper) and counter-propagation (down) configuration. HR: highly reflective fiber Bragg grating; TDF: Tm-doped fiber; PR: partially reflective fiber Bragg grating; ISO: optical isolator; DM: dichroic mirror.
Fig. 3
Fig. 3 Output performance of the 1942 nm pump laser. Symbols: measured data; lines: linear fitting. Inset shows the laser spectrum of the output laser beam.
Fig. 4
Fig. 4 Output performance of the 2020 nm tandem pumping fiber laser with the co- and counter-propagating laser configuration. Symbols: measured data; lines: linear fitting.
Fig. 5
Fig. 5 Laser spectra of the 2020 nm tandem pumping fiber laser with the co-propagating configuration under different output power levels.
Fig. 6
Fig. 6 Lasing performance of the Tm-doped fiber laser under different pump transitions.
Fig. 7
Fig. 7 Core (a) and coating (b) temperature of the Tm-doped fiber laser under different pump transitions.

Metrics