Abstract

We experimentally demonstrate a quad-carrier 1-Tb/s solution with 37.5-GBaud PM-16QAM signal over 37.5-GHz optical grid at 6.7 b/s/Hz net spectral efficiency. Digital Nyquist pulse shaping at the transmitter and post-equalization at the receiver are employed to mitigate the impairments of joint inter-symbol-interference (ISI) and inter-channel-interference (ICI) symbol degradation. The post-equalization algorithms consist of one sample/symbol based decision-directed least mean square (DD-LMS) adaptive filter, digital post filter and maximum likelihood sequence estimation (MLSE), and a positive iterative process among them. By combining these algorithms, the improvement as much as 4-dB OSNR (0.1nm) at SD-FEC limit (Q2 = 6.25 corresponding to BER = 2.0e-2) is obtained when compared to no such post-equalization process, and transmission over 820-km EDFA-only standard single-mode fiber (SSMF) link is achieved for two 1.2-Tb/s signals with the averaged Q2 factor larger than 6.5 dB for all sub-channels. Additionally, 50-GBaud 16QAM operating at 1.28 samples/symbol in a DAC is also investigated and successful transmission over 410-km SSMF link is achieved at 62.5-GHz optical grid.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel

Jianqiang Li, Magnus Karlsson, Peter A. Andrekson, and Kun Xu
Opt. Express 20(26) B223-B231 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
    [Crossref]
  2. X. Zhou and L. E. Nelson, “400G WDM transmission on the 50 GHz grid for future optical networks,” J. Lightwave Technol. 30(24), 3779–3792 (2012).
    [Crossref]
  3. J. Yu, Z. Dong, H. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz,” J. Lightwave Technol. 31(4), 515–522 (2013).
    [Crossref]
  4. M. Xiang, S. Fu, M. Tang, H. Tang, P. Shum, and D. Liu, “Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping,” Opt. Express 22(14), 17448–17457 (2014).
    [Crossref] [PubMed]
  5. J. H. Ke, Y. Gao, and J. C. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–83 (2014).
    [Crossref] [PubMed]
  6. C. Xie, B. Zhu, and E. Burrows, “Transmission performance of 256-Gb/s PDM-16QAM with different amplification schemes and channel spacings,” J. Lightwave Technol. 32(13), 2324–2331 (2014).
    [Crossref]
  7. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC, San Diego, California, paper PDPB7 (2010).
    [Crossref]
  8. E. Tipsuwannakul, J. Li, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Transmission of 3x224 Gbit/s DP-16QAM signals with (up to) 7.2 bit/s/Hz spectral efficiency in SMF-EDFA links,” Proc. OFC/NFOEC, Los Angeles, California, paper OW4C.6 (2012).
  9. G. Raybon, A. Adamiecki, S. Randel, and P. J. Winzer, “Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems,” Proc. OFC, San Francisco, California, paper Th4F.1 (2014).
  10. J.-X. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. V. Sinkin, Y. Sun, A. Pilipetskii, and D. G. Foursa, “Transmission over 9100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” Proc. OFC, San Francisco, California, paper Th5B.4 (2014).
  11. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  12. J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” Proc. ECOC, Cannes, France, paper Tu.3.3.4 (2014).
    [Crossref]
  13. L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. E. Parahyba, E. P. Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” Proc. OFC, San Francisco, California, paper M3C.3 (2014).
    [Crossref]
  14. Z. Jia, Y. Cai, H.-C. Chien, and J. Yu, “Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output,” Opt. Express 22(5), 6047–6059 (2014).
    [PubMed]
  15. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt. Express 20(9), 10271–10282 (2012).
    [Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (3)

2009 (1)

Andrekson, P. A.

Basch, E. B.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Burrows, E.

Cai, Y.

Cartledge, J. C.

Chen, S.

Chien, H.

Chien, H.-C.

Dong, Z.

Fu, S.

Gao, Y.

Gringeri, S.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Gunkel, M.

Huo, D.

Jia, Z.

Karlsson, M.

Ke, J. H.

Li, J.

Li, X.

Liu, D.

Ma, Y.

Mayer, H.

Nelson, L. E.

Schippel, A.

Shieh, W.

Shum, P.

Sjödin, M.

Tang, H.

Tang, M.

Tang, Y.

Wagner, P.

Xia, T.-J.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Xiang, M.

Xie, C.

Yang, Q.

Yu, J.

Zhou, X.

Zhu, B.

IEEE Commun. Mag. (1)

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (5)

Other (6)

J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” Proc. ECOC, Cannes, France, paper Tu.3.3.4 (2014).
[Crossref]

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. E. Parahyba, E. P. Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” Proc. OFC, San Francisco, California, paper M3C.3 (2014).
[Crossref]

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC, San Diego, California, paper PDPB7 (2010).
[Crossref]

E. Tipsuwannakul, J. Li, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Transmission of 3x224 Gbit/s DP-16QAM signals with (up to) 7.2 bit/s/Hz spectral efficiency in SMF-EDFA links,” Proc. OFC/NFOEC, Los Angeles, California, paper OW4C.6 (2012).

G. Raybon, A. Adamiecki, S. Randel, and P. J. Winzer, “Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems,” Proc. OFC, San Francisco, California, paper Th4F.1 (2014).

J.-X. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. V. Sinkin, Y. Sun, A. Pilipetskii, and D. G. Foursa, “Transmission over 9100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” Proc. OFC, San Francisco, California, paper Th5B.4 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup. OC: optical coupler, SW: switch, WSS: wavelength-selective switch, ICR: integrated coherent receiver, LO: local oscillator.
Fig. 2
Fig. 2 Signal spectra (a) Nyquist electrical spectrum and (b) Optical spectra before and after transmission.
Fig. 3
Fig. 3 Block diagram of post-equalization algorithm.
Fig. 4
Fig. 4 BTB OSNR performance with different post-equalization configurations.
Fig. 5
Fig. 5 Back-to-back OSNR performance at different channel spacings.
Fig. 6
Fig. 6 Experimental results by adjustment of DPF response and MLSE.
Fig. 7
Fig. 7 Experimental transmission results: (a) eight subcarriers at different transmission distance; (b) w/ and w/o post-equalization algorithm.

Metrics