Abstract

For usual lossy and lossless dielectric spherical particles, it can never realize zero forward scattering, since their Mie expansion coefficients cannot be totally offset at forward direction. By introducing suitable gain in dielectric spherical particles, we find that the electric and magnetic dipolar responses can achieve complete destructive interference at forward direction under certain incident wavelength. When the radius of particle is much smaller than the incident wavelength, the quadrupole and other higher order Mie coefficients are negligible, thus zero forward scattering can be observed and simultaneously backscattering will get enhanced. However, if the quadrupole Mie coefficients are of the same order of magnitude with dipolar terms, coherent effect between them may result in the scattering minimum and maximum shift away from forward and backward directions, respectively. These results may provide new insight into the manipulation of light scattering direction at nanoscale.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-directional forward scattering by individual core-shell nanoparticles

Wei Liu, Jianfa Zhang, Bing Lei, Haotong Ma, Wenke Xie, and Haojun Hu
Opt. Express 22(13) 16178-16187 (2014)

Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

Exception for the zero-forward-scattering theory

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz
J. Opt. Soc. Am. A 25(11) 2875-2878 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Contribution to the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
    [Crossref]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]
  5. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  6. S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
    [Crossref] [PubMed]
  7. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
    [Crossref] [PubMed]
  8. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
    [Crossref] [PubMed]
  9. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  10. M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983).
    [Crossref]
  11. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
    [Crossref]
  12. A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton. 4(1), 041590 (2010).
    [Crossref]
  13. B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
    [Crossref] [PubMed]
  14. Y. X. Ni, L. Gao, A. E. Miroshnichenko, and C. W. Qiu, “Controlling light scattering and polarization by spherical particles with radial anisotropy,” Opt. Express 21(7), 8091–8100 (2013).
    [Crossref] [PubMed]
  15. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
    [Crossref] [PubMed]
  16. H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27(4), 873–877 (2010).
    [Crossref] [PubMed]
  17. B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
    [Crossref] [PubMed]
  18. H. Ramachandran and N. Kumar, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 100(22), 229703 (2008).
    [Crossref] [PubMed]
  19. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  20. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
    [Crossref]
  21. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  22. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
    [Crossref] [PubMed]
  23. R. Frank and A. Lubatsch, “Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior,” Phys. Rev. A 84(1), 013814 (2011).
    [Crossref]
  24. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  25. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
    [Crossref]
  26. B. Crosignani, P. DiPorto, and S. Solimeno, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1986).
  27. X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
    [Crossref]
  28. A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
    [Crossref]
  29. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref] [PubMed]
  30. N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
    [Crossref]
  31. I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express 2(5), 496–500 (2012).
    [Crossref]

2013 (2)

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Y. X. Ni, L. Gao, A. E. Miroshnichenko, and C. W. Qiu, “Controlling light scattering and polarization by spherical particles with radial anisotropy,” Opt. Express 21(7), 8091–8100 (2013).
[Crossref] [PubMed]

2012 (4)

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express 2(5), 496–500 (2012).
[Crossref]

2011 (6)

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

R. Frank and A. Lubatsch, “Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior,” Phys. Rev. A 84(1), 013814 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
[Crossref] [PubMed]

2010 (6)

H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27(4), 873–877 (2010).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

2009 (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (4)

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

H. Ramachandran and N. Kumar, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 100(22), 229703 (2008).
[Crossref] [PubMed]

2007 (1)

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

2006 (1)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

1983 (1)

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

1908 (1)

G. Mie, “Contribution to the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

Aizpurua, J.

Albella, P.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Alú, A.

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Benamara, O.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Berthelot, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Bhatt, H.

Busch, K.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Cao, J.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Chantada, L.

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Colas des Francs, G.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de la Osa, R. A.

Derom, S.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

Dorofeenko, A. V.

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

El-Ganainy, R.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Engheta, N.

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Frank, R.

R. Frank and A. Lubatsch, “Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior,” Phys. Rev. A 84(1), 013814 (2011).
[Crossref]

Froufe-Pérez, L. S.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Gao, L.

García-Cámara, B.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

García-Etxarri, A.

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Gibbs, H. M.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Giles, C. L.

Girard, C.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Glas, P.

Gomez-Medina, R.

Gómez-Medina, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

González, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Ho, K. M.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Hu, X.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jurdyc, A. M.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Kerker, M.

Khitrova, G.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Kip, D.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Konig, M.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Kruschke, D.

Kumar, N.

H. Ramachandran and N. Kumar, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 100(22), 229703 (2008).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Li, M.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Linden, S.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Lisyansky, A. A.

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

López, C.

Lubatsch, A.

R. Frank and A. Lubatsch, “Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior,” Phys. Rev. A 84(1), 013814 (2011).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Makris, K. G.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Mehta, R. V.

H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27(4), 873–877 (2010).
[Crossref] [PubMed]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

Meinzer, N.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Mie, G.

G. Mie, “Contribution to the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

Miroshnichenko, A. E.

Miyawaki, M.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Moreels, I.

Moreno, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Ni, Y. X.

Nieto-Vesperinas, M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

Patel, R.

H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27(4), 873–877 (2010).
[Crossref] [PubMed]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Pillonnet, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Pukhov, A. A.

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Qiu, C. W.

Ramachandran, H.

H. Ramachandran and N. Kumar, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 100(22), 229703 (2008).
[Crossref] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rüter, C. E.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Ruther, M.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Sáenz, J. J.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Saiz, J. M.

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36(5), 728–730 (2011).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

Scheffold, F.

Segev, M.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Tomm, J. W.

Upadhyay, R. V.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Videen, G.

Vinogradov, A. P.

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Wang, D. S.

Wegener, M.

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Ye, Z.

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zyablovsky, A. A.

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Ann. Phys. (1)

G. Mie, “Contribution to the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (1)

N. Meinzer, M. Konig, M. Ruther, S. Linden, G. Khitrova, H. M. Gibbs, K. Busch, and M. Wegener, “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Appl. Phys. Lett. 99(11), 111104 (2011).
[Crossref]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

J. Nanophoton. (2)

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Metamaterials (Amst.) (1)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

Nanotechnology (1)

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. Colas des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles,” Nanotechnology 24(49), 495704 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6(3), 192–195 (2010).
[Crossref]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

R. Frank and A. Lubatsch, “Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior,” Phys. Rev. A 84(1), 013814 (2011).
[Crossref]

Phys. Rev. B (1)

X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K. M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B 77(20), 205104 (2008).
[Crossref]

Phys. Rev. Lett. (3)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96(12), 127402 (2006).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, and J. M. Saiz, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 98(17), 179701 (2007).
[Crossref] [PubMed]

H. Ramachandran and N. Kumar, “Comment on ‘experimental evidence of zero forward scattering by magnetic spheres’,” Phys. Rev. Lett. 100(22), 229703 (2008).
[Crossref] [PubMed]

Phys. Usp. (1)

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Usp. 55(11), 1080–1097 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

B. Crosignani, P. DiPorto, and S. Solimeno, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) 3D plot of forward scattering intensity (logarithmic scale) considering only dipolar Mie coefficients as a function of incident wavelengthλand imaginary part of permittivity Im( ε p ) for a spherical particle with radius a=100 nm and real part of permittivity Re( ε p )=16 in vacuum. (b) The corresponding 2D pseudocolor plot of Fig. 1(a).
Fig. 2
Fig. 2 Scattering properties at minimum point A. (a) Scattering diagram for a spherical particle with radius a=100 nm and permittivity ε p =162.8i at incident wavelength λ=768 nm under both TE and TM polarizations. The left half part of graph shows the scattering diagram considering all Mie coefficients while the right half part presents the scattering diagram considering only dipolar coefficients. (b) Distribution of the scattered electric field intensity (logarithmic scale) around the spherical particle.
Fig. 3
Fig. 3 Scattering properties at minimum point B. (a) Scattering diagram for a spherical particle with radius a=100 nm and permittivity ε p =160.8i at incident wavelength λ=517 nm under both TE and TM polarizations. The left half part of graph gives the scattering diagram considering all Mie coefficients while the right half part presents the scattering diagram considering only dipolar coefficients. Inset: Enlarged area for demonstrating scattering minimum at a non-zero angle. (b) Distribution of the scattered electric field intensity (logarithmic scale) around the spherical particle.
Fig. 4
Fig. 4 Scattering properties at two maximum points C and D. (a) Scattering diagram considering all Mie coefficients under both TE and TM polarizations and (b) nearby distribution of the scattered magnetic field intensity around a spherical particle with radius a=100 nm and permittivity ε p =161.1i at incident wavelength λ=832 nm . (c) Scattering diagram considering all Mie coefficients under both TE and TM polarizations and (d) nearby distribution of the scattered electric field intensity around a spherical particle with radius a=100 nm and permittivity ε p =162.2i at incident wavelength λ=590 nm .

Tables (1)

Tables Icon

Table 1 Numerical Results of the First Six Electric ( a 1 , a 2 and a 3 ) and Magnetic ( b 1 , b 2 and b 3 ) Mie Coefficients at Four Extreme Points Shown in Figs. 1(a) and 1(b)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 = λ 2 4 π 2 m s 2 r 2 sin 2 φ | S 1 ( cosθ ) | 2 , (TE for φ =90 )
I 2 = λ 2 4 π 2 m s 2 r 2 cos 2 φ | S 2 ( cosθ ) | 2 , (TM for φ =0 )
I( θ= 0 )= λ 2 16 π 2 m s 2 r 2 | n=1 ( 2n+1 )( a n + b n ) | 2 .
a n = ψ n ( mx ) ψ n ' ( x ) 1 m ψ n ( x ) ψ n ' ( mx ) ψ n ( mx ) ξ n ' ( x ) 1 m ξ n ( x ) ψ n ' ( mx ) ,
b n = ψ n ( mx ) ψ n ' ( x )m ψ n ( x ) ψ n ' ( mx ) ψ n ( mx ) ξ n ' ( x )m ξ n ( x ) ψ n ' ( mx ) .
I( θ= 0 )= 9 λ 2 16 π 2 m s 2 r 2 | a 1 + b 1 | 2 .

Metrics