Abstract

A 360° all-around multiview three-dimensional (3D) display system is proposed by using coarse-pitch circular-aligned OLED microdisplays. The magnified virtual color images projected from microdisplays serve as stereo images, which can create separate eyeboxes for the viewer. Through inserting baffles, a transitional stereo image assembled by two spatially complementary segments from adjacent stereo images is presented to a complementary fusing zone (CFZ) which locates between adjacent eyeboxes. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo images and thus overcoming the problem of discontinuous moving parallax. Such a controllable light-ray fusing technology, assured by the inherent large divergent angle of OLED pixels, decreases the required number of display panels for 360° multiview 3D display greatly. A prototype display system with only 67 full-color OLED microdisplays is set up to demonstrate the 360° 3D color display. The develop system is freed from the dependence on mechanical moving elements, high-speed components and diffusion screens.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays

Dongdong Teng, Zhiyong Pang, Yueli Zhang, Dong Wu, Jiahui Wang, Lilin Liu, and Biao Wang
Opt. Express 23(17) 21549-21564 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv Opt Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  2. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref] [PubMed]
  3. D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
    [Crossref]
  4. Y. Sando, D. Barada, and T. Yatagai, “Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method,” Opt. Lett. 39(19), 5555–5557 (2014).
    [Crossref] [PubMed]
  5. T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
    [PubMed]
  6. J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
    [Crossref]
  7. Y. Takaki and J. Nakamura, “Generation of 360-degree color three-dimensional images using a small array of high-speed projectors to provide multiple vertical viewpoints,” Opt. Express 22(7), 8779–8789 (2014).
    [Crossref] [PubMed]
  8. A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
    [Crossref]
  9. C. Yan, X. Liu, H. Li, X. Xia, H. Lu, and W. Zheng, “Color three-dimensional display with omnidirectional view based on a light-emitting diode projector,” Appl. Opt. 48(22), 4490–4495 (2009).
    [Crossref] [PubMed]
  10. H. Horimai, D. Horimai, T. Kouketsu, P. Lim, and M. Inoue, “Full-color 3D display system with 360 degree horizontal viewing angle,” Proc. of the Int. Symposium of 3D and Contents, 7–10 (2010).
  11. G. E. Favalora and O. S. Cossairt, “Theta-parallax-only (TPO) displays,” US Patent 7,364,300.
  12. Y. Takaki and S. Uchida, “Table screen 360-degree three-dimensional display using a small array of high-speed projectors,” Opt. Express 20(8), 8848–8861 (2012).
    [Crossref] [PubMed]
  13. O. Eldes, K. Akşit, and H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
    [Crossref] [PubMed]
  14. T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
    [Crossref]
  15. S. Yoshida, “fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media,” Proc. SPIE 8384, 838411 (2012).
    [Crossref]
  16. S. Yoshida, M. Kawakita, and H. Ando, “Light-field generation by several screen types for glasses-free table 3D display,” 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 1–4 (2011).
  17. S. Yoshida, “Real-time rendering of multi-perspective images for a glasses-free tabletop 3D display,” 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 1–4 (2013).
    [Crossref]
  18. R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
    [Crossref] [PubMed]
  19. M. K. Hedili, M. O. Freeman, and H. Urey, “Transmission characteristics of a bidirectional transparent screen based on reflective microlenses,” Opt. Express 21(21), 24636–24646 (2013).
    [Crossref] [PubMed]
  20. M. K. Hedili, M. O. Freeman, and H. Urey, “Microlens array-based high-gain screen design for direct projection head-up displays,” Appl. Opt. 52(6), 1351–1357 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (4)

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

S. Yoshida, “fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media,” Proc. SPIE 8384, 838411 (2012).
[Crossref]

Y. Takaki and S. Uchida, “Table screen 360-degree three-dimensional display using a small array of high-speed projectors,” Opt. Express 20(8), 8848–8861 (2012).
[Crossref] [PubMed]

T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
[PubMed]

2011 (1)

2010 (1)

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

2009 (1)

2007 (1)

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

2006 (1)

R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
[Crossref] [PubMed]

2005 (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Aksit, K.

Barada, D.

Bolas, M.

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Debevec, P.

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Eldes, O.

Finke, G.

Freeman, M. O.

Fujii, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

Garbat, P.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv Opt Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hedili, M. K.

Horry, Y.

R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
[Crossref] [PubMed]

Hoshino, T.

R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
[Crossref] [PubMed]

Javidi, B.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Jones, A.

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Kang, H.

Kozacki, T.

Kujawinska, M.

Li, H.

Liu, L.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Liu, X.

Lu, H.

Modowall, I.

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Nakamura, J.

Onural, L.

Otsuka, R.

R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
[Crossref] [PubMed]

Sando, Y.

Son, J. Y.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Sun, B.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Takaki, Y.

Tanimoto, M.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

Tehrani, M. P.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

Teng, D.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Uchida, S.

Urey, H.

Wang, B.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Wang, Z.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Xia, X.

Yamada, H.

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Yan, C.

Yaras, F.

Yatagai, T.

Yendo, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

Yoshida, S.

S. Yoshida, “fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media,” Proc. SPIE 8384, 838411 (2012).
[Crossref]

Zaperty, W.

Zheng, W.

ACM Trans. Graph. (1)

A. Jones, I. Modowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Adv Opt Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv Opt Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE Trans. Vis. Comput. Graph. (1)

R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: A novel approach to the display and transmission of 360 degrees-viewable 3D solid images,” IEEE Trans. Vis. Comput. Graph. 12(2), 178–185 (2006).
[Crossref] [PubMed]

J. Disp. Technol. (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multi-view images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

J. Vis. Commun. Image R. (1)

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: cylindrical 3D display viewable from 360 degrees,” J. Vis. Commun. Image R. 21(5–6), 586–594 (2010).
[Crossref]

Opt. Commun. (1)

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (1)

S. Yoshida, “fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media,” Proc. SPIE 8384, 838411 (2012).
[Crossref]

Other (4)

S. Yoshida, M. Kawakita, and H. Ando, “Light-field generation by several screen types for glasses-free table 3D display,” 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 1–4 (2011).

S. Yoshida, “Real-time rendering of multi-perspective images for a glasses-free tabletop 3D display,” 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 1–4 (2013).
[Crossref]

H. Horimai, D. Horimai, T. Kouketsu, P. Lim, and M. Inoue, “Full-color 3D display system with 360 degree horizontal viewing angle,” Proc. of the Int. Symposium of 3D and Contents, 7–10 (2010).

G. E. Favalora and O. S. Cossairt, “Theta-parallax-only (TPO) displays,” US Patent 7,364,300.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical arrangement of the proposed 360° multiview 3D display system with only two adjacent projecting units being drawn for simplicity: (a) Structure of the projecting unit k; (b) The adjacent projecting unit k + 1 with an off-set angle to the unit k; (c) Diagram of the viewing region when two adjacent projecting units are activated simultaneously.
Fig. 2
Fig. 2 Optical diagram showing the observed transition stereo image when the pupil is cover by a CFZ.
Fig. 3
Fig. 3 Photograph of the experimental display system.
Fig. 4
Fig. 4 Captured color images by an angular spacing of 36° along the preferred observing path when the display system works.
Fig. 5
Fig. 5 The same transitional stereo image captured from the above prototype system and the verification experiment. For comparison purpose, the two images are zoomed into the same size here.

Tables (3)

Tables Icon

Table 1 Definitions of symbols

Tables Icon

Table 2 Input system parameters in the prototype system

Tables Icon

Table 3 Optimized input system parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ VZ =2arctan((β d x D )/2v) θ PVZ =arcsin(0.5β d x cos(0.5Δθ)/(v0.5β d x sin(0.5Δθ))) arcsin(0.5β d x cos(0.5Δθ)/(v+0.5β d x sin(0.5Δθ))) θ CFZ =2arcsin(0.5β d x cos(0.5Δθ)/(v+0.5β d x sin(0.5Δθ)))
I Q kQk+1 = α Qk I Q k + α Qk+1 I Q k+1
α Qk = D 2(k) Q k / D 1(k) D 2(k) α Qk+1 = Q k+1 D 1(k+1) / D 1(k+1) D 2(k+1)
crosstalk(%)= reflection signal ×100
2 R 2 =β d x =(v/u) d x =v(1/f+1/v) d x =(R/f+1) d x

Metrics