Abstract

Including an entrance pupil in optical systems provides clear benefits for balancing the overall performance of freeform and/or rotationally symmetric imaging systems. Current existing direct design methods that are based on perfect imaging of few discrete ray bundles are not well suited for wide field of view systems. In this paper, a three-dimensional multi-fields direct design approach is proposed to balance the full field imaging performance of a two-surface freeform lens. The optical path lengths and image points of numerous fields are calculated during the procedures, wherefore very few initial parameters are needed in advance. Design examples of a barcode scanner lens as well as a line imaging objective are introduced to demonstrate the effectiveness of this method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design method of freeform off-axis reflective imaging systems with a direct construction process

Tong Yang, Jun Zhu, Wei Hou, and Guofan Jin
Opt. Express 22(8) 9193-9205 (2014)

Starting configuration design method of freeform imaging and afocal systems with a real exit pupil

Tong Yang, Jun Zhu, and Guofan Jin
Appl. Opt. 55(2) 345-353 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).
    [Crossref]
  2. B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).
  3. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  4. H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-through head-mounted display with eyetracking capability,” Opt. Express 21(25), 30993–30998 (2013).
    [Crossref] [PubMed]
  5. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39(13), 2210–2220 (2000).
    [Crossref] [PubMed]
  6. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
    [Crossref]
  7. J. Zhu, T. Yang, and G. Jin, “Design method of surface contour for a freeform lens with wide linear field-of-view,” Opt. Express 21(22), 26080–26092 (2013).
    [Crossref] [PubMed]
  8. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
    [Crossref] [PubMed]
  9. Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
  10. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16(3), 1583–1589 (2008).
    [Crossref] [PubMed]
  11. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
    [Crossref] [PubMed]
  12. G. W. Forbes, “Characterizing the shape of freeform optics,” Opt. Express 20(3), 2483–2499 (2012).
    [Crossref] [PubMed]
  13. R. A. Hicks, “Direct methods for freeform surface design,” Proc. SPIE 6668, 666802 (2007).
    [Crossref]
  14. W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express 20(9), 9726–9735 (2012).
    [Crossref] [PubMed]
  15. J. Liu, P. Benítez, and J. C. Miñano, “Single freeform surface imaging design with unconstrained object to image mapping,” Opt. Express 22(25), 30538–30546 (2014).
    [Crossref] [PubMed]
  16. T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
    [Crossref] [PubMed]
  17. J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
    [Crossref] [PubMed]
  18. F. Duerr, Y. Meuret, and H. Thienpont, “Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio,” Opt. Express 21(25), 31072–31081 (2013).
    [Crossref] [PubMed]
  19. R. R. Shannon, The Art and Science of Optical Design (Cambridge University, 1997).
  20. Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
    [Crossref]
  21. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
  22. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  23. P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
    [Crossref]
  24. M. Laikin, Lens Design (CRC, 2006).
  25. Z. Manual, Zemax LLC, Kirkland, Washington, USA. http://www.zemax.com/ (2014).
  26. T. Katsuma, “Finite conjugate lens system,” United States Patent 5600493 (Feb. 1997).
  27. R. E. Fischer, B. Tadic-Galeb, P. R. Yoder, and R. Galeb, Optical System Design (McGraw Hill, 2000).
  28. M. Reiss, “Wide-angle camera objective,” United States Patent 2518719 (Aug. 1950).

2015 (3)

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
[Crossref]

2014 (3)

2013 (3)

2012 (3)

2011 (1)

2009 (2)

2008 (1)

2007 (1)

R. A. Hicks, “Direct methods for freeform surface design,” Proc. SPIE 6668, 666802 (2007).
[Crossref]

2005 (1)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

2004 (1)

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

2000 (1)

Alvarez, J. L.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Benitez, P.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Benítez, P.

Biot, G.

Blen, J.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Broemel, A.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Cakmakci, O.

Chaves, J.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Cheng, D.

Chrien, T. G.

Davis, G. E.

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).
[Crossref]

de la Fuente, M.

Dross, O.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Duerr, F.

Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
[Crossref]

F. Duerr, Y. Meuret, and H. Thienpont, “Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio,” Opt. Express 21(25), 31072–31081 (2013).
[Crossref] [PubMed]

Falicoff, W.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Forbes, G. W.

Foroosh, H.

Fuerschbach, K.

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).
[Crossref]

K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
[Crossref] [PubMed]

Gao, C.

Grabovickic, D.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

Green, R. O.

Gross, H.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Hernandez, M.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Hicks, R. A.

R. A. Hicks, “Direct methods for freeform surface design,” Proc. SPIE 6668, 666802 (2007).
[Crossref]

Hou, W.

Hu, X.

Hua, H.

Infante, J.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
[Crossref] [PubMed]

Infante, J. M.

Jin, G.

Kirschstein, S.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Li, L.

Lin, W.

Liu, J.

Meuret, Y.

Minano, J. C.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Miñano, J. C.

Mohedano, R.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Moore, B.

Mouroulis, P.

Muñoz, F.

Narasimhan, B.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

Nie, Y.

Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
[Crossref]

Nikolic, M.

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

Petruck, P.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Rolland, J. P.

Santamaría, A.

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Talha, M. M.

Thienpont, H.

Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
[Crossref]

F. Duerr, Y. Meuret, and H. Thienpont, “Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio,” Opt. Express 21(25), 31072–31081 (2013).
[Crossref] [PubMed]

Thompson, K. P.

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).
[Crossref]

K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
[Crossref] [PubMed]

Tuennermann, A.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Wang, Y.

Yang, T.

Yi, A. Y.

Zhong, Y.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

Zhu, J.

Appl. Opt. (3)

Opt. Eng. (2)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Y. Nie, F. Duerr, and H. Thienpont, “Direct design approach to calculate a two-surface lens with an entrance pupil for application in wide field-of- view imaging,” Opt. Eng. 54(1), 015102 (2015).
[Crossref]

Opt. Express (10)

J. Zhu, T. Yang, and G. Jin, “Design method of surface contour for a freeform lens with wide linear field-of-view,” Opt. Express 21(22), 26080–26092 (2013).
[Crossref] [PubMed]

H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-through head-mounted display with eyetracking capability,” Opt. Express 21(25), 30993–30998 (2013).
[Crossref] [PubMed]

O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16(3), 1583–1589 (2008).
[Crossref] [PubMed]

K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
[Crossref] [PubMed]

G. W. Forbes, “Characterizing the shape of freeform optics,” Opt. Express 20(3), 2483–2499 (2012).
[Crossref] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express 20(9), 9726–9735 (2012).
[Crossref] [PubMed]

J. Liu, P. Benítez, and J. C. Miñano, “Single freeform surface imaging design with unconstrained object to image mapping,” Opt. Express 22(25), 30538–30546 (2014).
[Crossref] [PubMed]

T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
[Crossref] [PubMed]

J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17(26), 24036–24044 (2009).
[Crossref] [PubMed]

F. Duerr, Y. Meuret, and H. Thienpont, “Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio,” Opt. Express 21(25), 31072–31081 (2013).
[Crossref] [PubMed]

Proc. SPIE (5)

R. A. Hicks, “Direct methods for freeform surface design,” Proc. SPIE 6668, 666802 (2007).
[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).
[Crossref]

B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, M. Nikolic, and J. Infante, “Design of three freeform mirror aplanat,” Proc. SPIE 9579, 95790K (2015).

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez, and W. Falicoff, “SMS design method in 3D geometry: examples and applications,” Proc. SPIE 5185, 518518 (2004).
[Crossref]

Other (8)

M. Laikin, Lens Design (CRC, 2006).

Z. Manual, Zemax LLC, Kirkland, Washington, USA. http://www.zemax.com/ (2014).

T. Katsuma, “Finite conjugate lens system,” United States Patent 5600493 (Feb. 1997).

R. E. Fischer, B. Tadic-Galeb, P. R. Yoder, and R. Galeb, Optical System Design (McGraw Hill, 2000).

M. Reiss, “Wide-angle camera objective,” United States Patent 2518719 (Aug. 1950).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

R. R. Shannon, The Art and Science of Optical Design (Cambridge University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The example of a direct design method for freeform optics that achieves two or three perfect image points, whereas what we actually want to obtain is a well-balanced performance throughout the FOV as the dashed line.
Fig. 2
Fig. 2 The initial setup of multi-fields 3D design method
Fig. 3
Fig. 3 Illustration of the design procedures to calculate two freeform surfaces partially coupling N(N>3) ray bundles: (a) define initial segments (b) one new field is constructed by sampling multiple rays to calculate its OPL and image point (c) The points clouds on both surfaces are extended by the addition of new points from iterative calculations between two adjacent fields (d) The lens surfaces are finalized by interpolating known points and extending into full aperture.
Fig. 4
Fig. 4 The flow chart to calculate two surfaces with multi-fields design method.
Fig. 5
Fig. 5 (a) The 2D lens profile shows a good converging performance over the whole field when all the coefficients are imported into Zemax. (b) The contour plots of the first and second lens surface where the best fitting sphere is subtracted from each of the calculated surfaces.
Fig. 6
Fig. 6 The direct comparison in terms of spot radius for (a) the multi-fields 3D design method and (b) the multi-fields 2D design method clearly shows a better imaging performance for the 3D design method.
Fig. 7
Fig. 7 The aberration comparison between (a-b) a spherical/aspheric barcode scanner from U.S. Patent 56004934 and (c-d) a freeform lens designed by multi-fields 3D method shows comparable performance except distortion.
Fig. 8
Fig. 8 (a) A wide-angle objective from U.S. Patent 2518719 modified for single wavelength application and (b) a hybrid design by combining multi-fields 3D method and classical design strategy
Fig. 9
Fig. 9 The direct comparison in terms of RMS spot radius for (a) the all-spherical four lenses design and (b) the hybrid two lenses design
Fig. 10
Fig. 10 The comparison of field curvature and distortion for (a) the all-spherical four lenses design and (b) the hybrid two lenses design
Fig. 11
Fig. 11 The comparison of MTF for (a) the all-spherical four lenses design and (b) the hybrid two lenses design

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z ( x , y ) = c ( x 2 + y 2 ) 1 + 1 c 2 ( x 2 + y 2 ) + i A i x m y n

Metrics