Abstract

We demonstrate a short-wavelength hybrid-cavity vertical-cavity surface-emitting laser (VCSEL) heterogeneously integrated on silicon. A GaAs-based “half-VCSEL” has been attached to a dielectric distributed Bragg reflector (DBR) on a silicon wafer using ultra-thin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding, thereby creating a cavity with the standing-wave optical field extending over the silicon- and GaAs-based parts of the cavity. A 9 µm oxide aperture diameter VCSEL with a threshold current of 1.2 mA produces 1.6 mW optical output power at 6.0 mA bias current with a wavelength of ~845 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate

James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain
Opt. Express 23(3) 2512-2523 (2015)

Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens
Opt. Mater. Express 3(1) 35-46 (2013)

Short-wavelength MEMS-tunable VCSELs

Garrett D. Cole, Elaine Behymer, Tiziana C. Bond, and Lynford L. Goddard
Opt. Express 16(20) 16093-16103 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  2. K. Takaki, N. Iwa, K. Hiraiwa, S. Imai, H. Shimizu, T. Kageyama, Y. Kawakita, N. Tsukiji, and A. Kasukawa, “A recorded 62% PCE and low series and thermal resistance VCSEL with a double intra-cavity structure,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2008), post deadline paper PDP1.
  3. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
    [Crossref]
  4. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
    [Crossref]
  5. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
    [Crossref]
  6. Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21(23), 28685–28692 (2013).
    [Crossref] [PubMed]
  7. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
    [Crossref] [PubMed]
  8. R. Wang, D. Sanchez, and G. Roelkens, “Design of a high contrast grating GaSb-based VCSEL integrated on silicon-on-insulator,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 91–92.
    [Crossref]
  9. D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
    [Crossref]
  10. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  11. P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
    [Crossref]
  12. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
    [Crossref] [PubMed]
  13. I. S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
    [Crossref]
  14. G. C. Park, W. Xue, E. Semenova, K. Yvind, J. Mørk, and I. Chung, “III-V/SOI Vertical cavity laser with in-plane output into a Si waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.17.
    [Crossref]
  15. S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
    [Crossref]
  16. G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
    [Crossref]
  17. W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
    [Crossref]
  18. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. (posted 21 July 2015, in press).
  19. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
    [Crossref]
  20. E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

2015 (4)

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
[Crossref] [PubMed]

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

2013 (3)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21(23), 28685–28692 (2013).
[Crossref] [PubMed]

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

2012 (1)

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

2011 (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

2010 (2)

2005 (1)

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

2004 (1)

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

1996 (1)

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

1990 (1)

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Al-Omari, A. N.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

Baets, R.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Baets, R. G.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Barrette, J. P.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Bengtsson, J.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

Bimberg, D.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Bozada Christopher, A.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Cerny, C. L. A.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Chang-Hasnain, C. J.

Chase, C.

Chung, I. S.

I. S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

DeSalvo, G. C.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Dettmer, R. W.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

DuBois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Ebel, J. L.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Ferrara, J.

Fish, M. A.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Geen, M.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Gillespie, J. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Guilfoyle, P. S.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Gustavsson, J. S.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Haglund, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Haglund, Å.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

Haglund, E.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

Haglund, E. P.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Havasy, C. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Hindi, J. J.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Hofmann, W.

Ikeda, K.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Jenkins, T. J.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Joel, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

Karagodsky, V.

Katayama, T.

Kawaguchi, H.

Kern, W.

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Keyvaninia, S.

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Koyama, F.

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Kumari, S.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Larisch, G.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Larsson, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Le Thomas, N.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

Lear, K. L.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

Ledentsov, N. N.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Li, H.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Lin, H. C.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Look, D. C.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Lott, J. A.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Louderback, D. A.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Majima, S.

Mørk, J.

I. S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Moser, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Muneeb, M.

Nakano, K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Pesala, B.

Pettiford, C. I.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Pickrell, G. W.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Qiao, P.

Quach, T. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Roelkens, G.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

R. Wang, D. Sanchez, and G. Roelkens, “Design of a high contrast grating GaSb-based VCSEL integrated on silicon-on-insulator,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 91–92.
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Sanchez, D.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

R. Wang, D. Sanchez, and G. Roelkens, “Design of a high contrast grating GaSb-based VCSEL integrated on silicon-on-insulator,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 91–92.
[Crossref]

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Sewell, J. S.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Stankovic, S.

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Tsunemi, Y.

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Van Thourhout, D.

Van Veldhoven, P. J.

Via, G. D.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Wang, R.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

R. Wang, D. Sanchez, and G. Roelkens, “Design of a high contrast grating GaSb-based VCSEL integrated on silicon-on-insulator,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 91–92.
[Crossref]

Westbergh, P.

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

Wolf, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

Yang, W.

Yokota, N.

Zhu, L.

Appl. Phys. Lett. (1)

I. S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Electron. Lett. (3)

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett. 51(14), 1096–1098 (2015).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett. 48(20), 1292–1294 (2012).
[Crossref]

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40(17), 1064–1065 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

IEEE Photonics J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

J. Electrochem. Soc. (2)

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (1)

S. Kumari, J. S. Gustavsson, R. Wang, E. P. Haglund, P. Westbergh, D. Sanchez, E. Haglund, Å. Haglund, J. Bengtsson, N. Le Thomas, G. Roelkens, A. Larsson, and R. Baets, “Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications,” Proc. SPIE 9372, 93720U (2015).
[Crossref]

Other (5)

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20 Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs,” IEEE Photon. Technol. Lett. (to be published).

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. (posted 21 July 2015, in press).

G. C. Park, W. Xue, E. Semenova, K. Yvind, J. Mørk, and I. Chung, “III-V/SOI Vertical cavity laser with in-plane output into a Si waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.17.
[Crossref]

K. Takaki, N. Iwa, K. Hiraiwa, S. Imai, H. Shimizu, T. Kageyama, Y. Kawakita, N. Tsukiji, and A. Kasukawa, “A recorded 62% PCE and low series and thermal resistance VCSEL with a double intra-cavity structure,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2008), post deadline paper PDP1.

R. Wang, D. Sanchez, and G. Roelkens, “Design of a high contrast grating GaSb-based VCSEL integrated on silicon-on-insulator,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 91–92.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic cross-section of a hybrid-cavity VCSEL with an intra-cavity diffraction grating for tapping off power to an in-plane waveguide.
Fig. 2
Fig. 2 (a) Schematic cross-section of the surface-emitting oxide-confined hybrid-cavity VCSEL. (b) Refractive index profile and simulated optical intensity along the optical axis of the VCSEL.
Fig. 3
Fig. 3 Fabrication process flow for the silicon-integrated hybrid-cavity VCSEL: the GaAs-based “half-VCSEL” epitaxial structure (a) is attached to the dielectric DBR on silicon, spin-coated with DVS-BCB (b–c). The GaAs substrate is removed, followed by p-contact deposition (d). After the mesa etching and SixNy deposition/opening (e), an oxide aperture is formed (f), the SixNy is removed, and the n-contact is deposited (g). Finally, the structure is planarized with BCB (h) to allow deposition of bondpads (i).
Fig. 4
Fig. 4 Fully processed VCSEL shown by (a) SEM images of a FIB cross-section and (b) an optical microscope image of the VCSEL chip surface.
Fig. 5
Fig. 5 Measured light-current-voltage characteristics for hybrid-cavity VCSELs with oxide aperture diameters of 3–9 µm. Inset: Spectrum for a 7 µm aperture VCSEL operated at 3.0 mA.
Fig. 6
Fig. 6 (a) Measured light-current-voltage characteristics at different heat-sink temperatures and (b) corresponding threshold current vs. heat-sink temperature for a 9 µm oxide aperture diameter VCSEL.

Metrics